[image: image6.png]Pre-Systems Systems Acquisition Sustainment

Acquisition (Engineering and Manufacturing
Deveopmert, Demonsiratan, Al valiared Block 2
LRIP & Production Requirements Authoriy
MNS quirements Authortty Block 3

Relationship to Requirements Process

Program Manager’s Guide for Managing Software
Rev 2.0

Program Manager's Guide for Managing Software
10 October 2001
Rev 2.0

Table of Contents

1Foreword

1DoD Acquisition Life Cycle

4Chapter 1
Why Manage Software?

6Chapter 2
Introduction to the Program Manager’s Guide for Managing Software

6Drivers

6Target Audience

6Organization of the Document

8Chapter 3
Program Management

8Drivers

8Mandatory Compliance Requirements

8Concepts

10Major Steps

10Measures

11Checklist

12Resources

13Chapter 4
Software Configuration Management

13Drivers

13Mandatory Compliance Requirements

13Concepts

13Major Steps

14Checklist

14Resources

16Chapter 5
Software Quality Assurance

16Drivers

16Mandatory Compliance Requirements

16Concepts

16Major Steps

17Checklist

17Resources

18Chapter 6
Risk Management

18Drivers

18Mandatory Compliance Requirements

18Concepts

19Major Steps

19Checklist

19Resource

20Chapter 7
Information Assurance

20Drivers

20Mandatory Compliance Requirements

21Concepts

21Major Steps

22Checklist

23Resources

25Chapter 8
Life Cycle Models

25Drivers

25Mandatory Compliance Requirements

25Concepts

26Major Steps

27Checklist

27Resources

28Chapter 9
Reviews

iDrivers
28

28Mandatory Compliance Requirements

28Concepts

29Major Steps

31Checklist

32Resources

33Chapter 10
Requirements

33Drivers

33Mandatory Compliance Requirements

34Concepts

34Major Steps

36Checklist

36Resources

38Chapter 11
COTS & Non-Developmental Software

38Drivers

38Mandatory Compliance Requirements

38Concepts

39Major Steps

39Checklist

40Resources

41Chapter 12
Design

41Drivers

41Mandatory Compliance Requirements

41Concepts

42Major Steps

42Checklist

42Resources

44Chapter 13
Code and Unit Test

44Drivers

44Mandatory Compliance Requirements

44Concepts

44Major Steps

45Checklist

45Resources

46Chapter 14
Integration and System Testing

46Drivers

46Mandatory Compliance Requirements

46Concepts

47Major Steps

48Checklist

48Resources

49Chapter 15
Software Deployment

49Drivers

49Mandatory Compliance Requirement

49Concepts

50Major Steps

50Checklist

51Resources

52Chapter 16
Software Maintenance

52Drivers

52Mandatory Compliance Requirements

52Concepts

53Major Steps

53Checklist

54Resources

Table of Figures

3Figure 1 – Software as a Distinct Element of the Systems Engineering Process

5Figure 2 – The 5000 Model

7Figure 3 – Product Engineering

10Figure 4 – Program Management

Table of Appendices

55APPENDIX A -
Acronym List

59APPENDIX B -
Relevant Policies & Standards

62APPENDIX C -
Best Practices

63APPENDIX D -
Tools

64APPENDIX E -
Lessons Learned

65APPENDIX F -
Education and Training

66APPENDIX G -
Selected Laws, Policies, and Procedures Relative to Information Management in DoD

66Memoranda

67Other

68DoD Directives, Instructions, Regulations, Manuals

69Accessibility

70Architecture and Interoperability

71DoD Guidance and Policy Memoranda

Foreword

The purpose of this Guide is to provide guidance and relevant information to Program Managers on software management activities. Although this Guide focuses on guidance, direction and assistance to Program Managers (PM) in the acquisition life cycle, it also has application to the total life cycle of programs and systems of systems at all organizational levels of the Department. It was developed to provide a quick and easy reference for all related policies and bodies of knowledge that when applied, would greatly aid in program cost, schedule and mission success. It was also intended to be readily usable to minimize the PM’s time to learn about software management.
There were several drivers related to software management that led us to the development of the Guide. Over the past several years we have been queried by Congress, GAO, and the DoD Inspector General’s Office about how the Department deals with software. These queries have ranged from software risk reduction to mandating software process improvements, to security risks at Central Design Activities. There is also much interest in a wide range of areas including: how much money is spent on software to support weapons systems, Information Technology Management Reform Act (ITMRA) compliance, and the lack of software assessments in the review of Automated Information Systems. Applications security, including a lack of comprehensive security policy is also a growing concern along.

There is much anecdotal and hard evidence that software is inadequately addressed in the areas of software measures, insufficient software expertise on PM staffs and inadequate policy on software management. The inadequate staff expertise is readily apparent because there also appears to be insufficient numbers of people being trained in software disciplines and those that are trained don’t always obtain the resources to apply what they learned. This is especially disheartening considering that there are books, experts, courses, articles, etc. on software that many can use to improve their software skills.

There have also been cases from both industry and the government about programs experiencing significant cost and schedule overruns, and program termination mainly due to a severe lack of understanding of software management issues and how to deal with software risks. The Defense Science Board Report on Software (November 2000) substantiated many of the above situations.

While there is a great deal of information available, including software manuals, books, and forums, the information is scattered and often difficult and time-consuming to locate and sift through. The Guide was, therefore, an OSD attempt to point to the existing body of knowledge and bring some of the guidance, direction, and philosophy on software management to the PMs who have to deal with software issues (and we believe that includes all PMs).

The guide should also be of use to other organizations such as the Program Executive Offices (PEOs), policy makers, and those in acquisition oversight. We therefore see great potential for this guide, particularly as a tool to aid in the improvement of the Department’s systems and ultimately its mission.

DoD Acquisition Life Cycle
The DoD acquisition life cycle prescribes the structure, process and methodology for acquiring major defense systems and systems of systems. Beginning with concept exploration and ending with deployment, the acquisition life cycle addresses all system components including hardware, communications, networks and software. It should be noted that software management applies to all phases of the acquisition process. While the guide concentrates in those areas of the life cycle, it also applies to embedded software, firmware, weapons systems software and models and simulation software.

A more detailed view of the acquisition life cycle, with a focus on the systems engineering view is shown in Figure 1. In this view, software is addressed throughout the life cycle and is an important part of the verification and validation activities when all components are integrated to produce the system. In the past, software has had little visibility in the acquisition and development of systems until code was implemented and systems were fielded. However, DoD has become increasingly aware that managing the development of software from the concept phase forward is crucial to the success of the overall system.

Figure 1 – Software as a Distinct Element of the Systems Engineering Process

Chapter 1 Why Manage Software Development?

	“Failure to prepare is preparing to fail.”

Software is a consistent and persistent thread through all DoD system acquisition programs. Requirements to be implemented in software exist at all phases of the acquisition process, as do those that will be implemented in hardware, communications and networks. At a high level, as shown in Figure 2, individual components, including software, are not distinguished. However, each of the phases addresses software components of the system. When a major automated information system is under consideration, software is the principle component in the acquisition activity.

Software is estimated to comprise as much as 90% of some systems. As such, it is important that it function as intended with reliability and exhibit high levels of quality. Ensuring that software-intensive systems are of high quality and reliability requires skilled developers and strong management skills to ensure the use of best practices, adherence to quality assurance and configuration management practices, and proper monitoring of budget and schedule. As an example, the number of discrepancies (unintentionally injected into software by requirements analysts and designers) and deficiencies (injected by programmers while interpreting designs) can be quite large. For complex software systems they can number in the tens-of-thousands
. Most of these, however, can be removed before delivery through the use of best practices such as self-checking by analysts and programmers, design reviews, peer inspections, walkthroughs, and module and integration testing. Jones
 estimates the pre-delivery defect removal rate using these techniques to be about 85%.

This Guide provides program managers and their staff guidance on the use of best practices at each phase of the life cycle. Coupled with strong management and skilled software engineers, the use of best practices can greatly increase the probability that the software product will be delivered on time, within budget, and will provide the functionality, reliability and quality the user expects.

	[image: image1.png]The 5000 Model

« Process entry at
A, B, or C (or within phases)

« Program outyear funding
‘when it makes sense, but no
later than Milestone B
(unless entering at C)

	[image: image2.png]Concept &
Technology
Development

 INCLUDEPICTURE "http://web2.deskbook.osd.mil/images/5000_SDD_MouseOff_lt.gif" * MERGEFORMATINET [image: image3.png]System Development
& Demonstration

 INCLUDEPICTURE "http://web2.deskbook.osd.mil/images/5000_PD_MouseOff_lt.gif" * MERGEFORMATINET [image: image4.png]ingle
Evolt

9 loc Caps

Production &
Deployment fR2

s Reiiew

 INCLUDEPICTURE "http://web2.deskbook.osd.mil/images/5000_OS_MouseOff_lt.gif" * MERGEFORMATINET [image: image5.png]Step.
ntaFul

iy FOC

Operations &
Support

	
	

Figure 2 – The 5000 Model4
Chapter 2 Introduction to the Program Manager’s Guide for Managing Software
This Guide introduces key aspects
of software management and points
 to existing knowledge.
Drivers

· PMs and others need to produce software that meets cost, schedule and performance goals.

· The role of software in satisfying the Information Technology Management Reform Act (ITMRA) requirements must be realized.

·
·
·
Target Audience

· Program Managers and their contractors

· Program Executive Officers

· Acquisition management and staff

· Those who operate, maintain and use systems

· Those performing oversight of investments that include software

· Those whose background in software is minimal

· Those who would find a single source of DoD information on software of value

Organization of the Document

Each chapter includes sections defining the reasons for using the process, procedures and regulations that DoD has declared mandatory for the process, the basic concepts of the process, the major steps required, a checklist which may be used to ensure the process is being performed correctly and a list of resources to go to for further information. The drawing at the beginning of each chapter is a process diagram. Most will show the inputs and outputs of the process. The individual process diagrams are merged into a single view of the software product engineering life cycle in Figure 4.

Figure 4 – Software Product Engineering

Chapter 3 Program Management

Program Management processes
 provide the insight needed to control
the program.
Drivers
· Success can only be achieved if the PM has sufficient information to determine if the program is on time, within cost and will perform according to the requirements and user expectations.
·
Mandatory Compliance Requirements
NOTE:
This set of requirements is applicable to each section of this document; therefore, they will not be repeated in each section.

· DII COE (software must be compliant through level 5 or have an approved waiver.)

· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, 10 June 2001.

· DoD C4ISR Architecture Framework, Version 2.0, 18 December 1997
· DoD Joint Technical Architecture, Version 4.0, 2 April 2001
· DoDD 5000.1, The Defense Acquisition System, (Incorporating Change 1, January 4, 2001), 23 October 2000.
· DoDI 5000.2, Operation of the Defense Acquisition System, (Including Change 1), 4 January 2001.

· FAR -- Part 39, Acquisition of Information Technology.

· Information Technology Management Reform Act (ITMRA), The National Defense Authorization Act for Fiscal Year 1996.

· OMB Circular A-130; Management of Federal Information Resources; Revised – November 30, 2000.

Concepts

· Activity Network: A means to organize and allocate work. It shows tasks and task dependencies in a network or flowchart format.

· Information Assurance
 (IA): "Information Operations that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. This includes providing for the restoration of information systems by incorporating protection, detection, and reaction capabilities."

· Program Executive Officer
: A military or civilian official who has primary responsibility for directing several major defense acquisition programs and for assigned major system and non-major system acquisition programs. A PEO has no other command or staff responsibilities within the Component, and only reports to and receives guidance and direction from the DoD Component Acquisition Executive.

· Program management6: The integration of planning and scheduling activities necessary to produce the required product(s).
· Program Manager (PM)6: The individual designated in accordance with criteria established by the appropriate Component Acquisition Executive to manage an acquisition program, and appropriately certified under the provisions of the Defense Acquisition Workforce Improvement Act (10 U.S.C.1701 et. seq.). A PM has no other command or staff responsibilities within the Component.

· Project plan: Documentation of the processes to be used, the project deliverables through all the milestones, and individual project tasks.

· Software risk management: The analysis of potential problems to include an assessment of the probability of their occurrence.

· Software configuration management: The identification, control, auditing and status tracking of configuration items in the software program.

· Software quality assurance: A proactive, independent task that implements strong verification and validation processes throughout the entire life cycle of the software.

· Work Breakdown Structure
 (WBS): A product-oriented family tree composed of hardware, software, services, data, and facilities. The family tree results from systems engineering efforts during the acquisition of a defense materiel item. A WBS displays and defines the product, or products, to be developed and/or produced. It relates the elements of work to be accomplished to each other and to the end product.

Major Steps
1. Plan the project and document the plans. Figure 4 provides an overview of the tasks included in project management. These cover support tasks (Chapters 3 – 9) and software engineering activities (Chapters 1– 16). Include the following in the plans:

	· Scheduling
	· Software Quality Assurance activities
	· Deployment

	· Resources
	· Software Configuration Management activities
	· Support

	· Development activities
	· Risk Management
	· Maintenance

	· Test activities
	· Training
	· Information Assurance

	· Interoperability Requirements
	· Security Requirements
	

	PROGRAM MANAGEMENT

Chapter 3

	
	Software Configuration Management

Chapter 4
	

	
	Software Quality Assurance

Chapter 5
	

	
	Software Risk Management

Chapter 6
	

	
	Information Assurance

Chapter 7
	

	
	Reviews

Chapter 9
	

	
	Product Engineering

Chapters 10-16
	

	
	Requirements
	Design
	Code & Unit Test
	Testing
	Deployment
	Maintenance
	

	
	
	

Figure 6 – Program Management

2.
3. Complete a baseline of measures at the project start. They should be collected and tracked throughout the life cycle enabling the PM to manage objectively. The following are measures that can indicate the health of a project.

4.

	Measure
	Definition/Value Added

	Defect Profile
	A measure to determine whether or not defects are being identified and removed as expected. Collecting the defect profile based on severity is an indicator of how well the defect removal process is working and if it needs to be improved. The goal of this tracking is to reduce rework and improve product quality.

	Earned Value
	Earned Value is an objective measurement of how much work has been accomplished on a project. Earned Value provides a framework for integrating cost, schedule and completed work so they can be tracked together.

	Effort
	This measure addresses the time expended by all staff members for each phase of the software development lifecycle. These measures shall allow staff to determine the amount of effort that is required to develop and field software within the DoD based on comparisons to other measures, such as size, cost, etc. This will help management to adequately fund staff for software development projects in the future.

	Number of COTS Components
	A measure to determine the extent of risk due to dependency on Commercial Off the Shelf (COTS) products and commercial service/maintenance. Determining the percentage of program functionality that is dependent on COTS will help lead to correlations between the cost, schedule and performance deficiencies and specific COTS packages or amount of COTS.

	Personnel Profile
	This measure can be defined to capture staff skills, security qualifications or educational information.

	Rating per Standard Used
	This measure is used to determine the extent of key products, processes and tools that are used in the development of the contract’s software. It predicts reliability, cost-effectiveness and timeliness of developed systems. Allows management to determine the need for software process improvement initiatives, such as implementation of the CMM or an equivalent model. Higher CMM levels have proven to produce better software.

	Schedule Compression Percentage
	Equals [1.00 – (Calendar Time Scheduled/Nominal Expected Time)] * 100, where Nominal Expected Time is a function of total effort expressed in person months.

	Software Product Size
	This measure will determine the size of the program using appropriate measurements, such as Lines of Code (LOC), function points, and number of requirements. The manager estimates this based on the initial assumptions about the size, the staff, resources, time required to build the software product, or actuals. Allows management to determine many of the program estimates such as cost, schedule and performance based on the size of the application.

	Total Software Cost
	The purpose of collecting software costs is to determine the total amount of funding that is allocated towards only the software portion of the program since some systems are comprised of elements other than software. This will also provide the amount of money that is spent during each phase of the lifecycle. Allows management to determine the amount of funds that have been allocated to Information Technology and software development and maintenance in all DoD systems.

5. Measure and use the information to manage.
Consider that:
· A schedule slip of 10 percent or more requires a 10 percent or greater reduction in software functionality to be delivered.
· The need to compress the schedule will not be helped by the addition of new technology.

· Customer- specific implementation solutions should be considered but not forced on the program.
Checklist

	Checklist Item
	(

	Is there a current, credible activity network supported by a Work Breakdown Structure?
	

	Is there a current, credible schedule and budget?
	

	Do you know what software you are responsible for delivering to the customer?
	

	Can you list the current top project risks?
	

	Do you know your schedule compression percentage?
	

	What is the estimated size of your software deliverable?
	

	Does your staff have sufficient expertise in the project domains?
	

	Has adequate staff been identified to allocate to the scheduled tasks at the right time?
	

	Is the software development environment defined?
	

Resources

· 1058-1998 IEEE Standard for Software Project Management Plans

· 1490-1998 IEEE Guide to the Project Management Body of Knowledge, Adoption of PMI Standard

· 982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable Software

· 982.2-1988 IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software

· Defense Acquisition Deskbook
·
· DoD Data & Analysis Center for Software
· DoDD 8000.1, Defense Information Management (IM) Program, establishes policy for all DoD MIS management and provides policy guidance and top-level requirements

· Global Information Grid (GIG) Architecture - Department of Defense Chief Information Office (DoD CIO) memorandum “Global Information Grid,” dated September 22, 1999, validating the requirement for this initiative.

· Guidelines for Successful Acquisition and Management of Software Intensive Systems, Version 3.0 May 2000 (STSC)
· Humphrey, Watts S., Managing the Software Process (The SEI Series), Addison-Wesley, 1989

· MIL-HDBK-881 DoD Handbook -- Work Breakdown Structure 2 January 1998
· Office of the Under Secretary of Defense for Acquisition, Technology and Logistics / Interoperability
· Software Program Managers Network
· Software Technology Support Center
· Some estimating techniques and values “Why Don't They Practice What We Preach?”
· USC Center for Software Engineering – COCOMO (COnstructive COst MOdel)

· USC Center for Software Engineering – Constructive COTS
· Yourdon, Edward, Death March: The Complete Software Developer’s Guide to Surviving ‘Mission Impossible’ Projects, Prentice Hall, 1999

Chapter 4 Software Configuration Management

	“There is nothing permanent except change.”

Drivers

· Software Configuration Management (SCM) is cost-effective project insurance (product-integrity focused).

· The integrity and traceability of any changes are maintained with Software Configuration Management processes.

· Proper configuration management and version control will assist in controlling and preventing the introduction of malicious code.

·
·
Mandatory Compliance Requirement
· DoDD 5010.19, Configuration Management.
Concepts
· Baseline
: Defined quantity or quality used as starting point for subsequent efforts and progress measurement that can be a technical, cost, or schedule baseline.
· Configuration11 A collection of an item's descriptive and governing characteristics, which can be expressed in functional terms, i.e., what performance the item is expected to achieve; and in physical terms, i.e., what the item should look like and consist of when it is built.
· Configuration Item (CI)11: An aggregation of hardware, firmware, computer software, or any of their discrete portions, which satisfies an end use function and is designated by the government for separate configuration management.
· Configuration management11: The technical and administrative direction and surveillance actions taken to identify and document the functional and physical characteristics of a configuration item (CI), to control changes to a CI and its characteristics, and to record and report change processing and implementation status. It provides a complete audit trail of decisions and design modifications.
· Software Configuration Control Board (SCCB): A group of technical experts who review all changes to software configuration items to provide technical guidance to the program manager.

Major Steps
1. Plan for configuration management. Include the following in the plan:

a. Configuration Identification:

i) Identify all configuration items (CIs) to be controlled.

ii) Identify baselines.

iii) Develop a schema to provide unique identifiers to each item.

b. Configuration Control:

i) Develop a closed loop corrective action process to track all changes to CIs to closure.

ii) Build or provide specifications to build work products from the software configuration management system.
iii) Purchase or develop tools for version control of source code.
c. Configuration Status Accounting: Publish a periodic report(s) describing the current configuration of each configuration item.

d. Configuration Audits: Perform periodic examinations of baselines for completeness.

e. Measure requirements change per month and number of defects that are open and closed.

2. Identify and install an automated tool to support the configuration management tasks.
3. Implement and conduct the configuration management activities according to the plan.

Checklist
	Checklist Item
	(

	Have all items subject to configuration control been identified in the program plan?
	

	Has a closed loop change management system been established and implemented?
	

	Has a SCCB been established?
	

	Are reviews performed to ensure that the changes have not comprised the safety or security of the system?
	

	Does SCM create or release all baselines for internal use?
	

	Does SCM create or release all baselines for delivery to the customer?
	

	Are records established and maintained describing configuration items?
	

	Are audits of SCM activities performed to confirm that baselines and documents are accurate?
	

Resources

· 828-1998 IEEE Standard for Software Configuration Management Plans

· Association for Configuration and Data Management

· CM Yellow Pages
· “Effective Software Configuration Management,” Bob Ventimiglia, CrossTalk, February 1998
· Project Management Institute, Configuration Management Special Interest Group
· Software Engineering Institute SCM home page

· STSC CM Website
Chapter 5 Software Quality Assurance

	Software Quality Assurance ensures planned processes are implemented and standards used.

Drivers

· Software quality assurance provides staff and management with objective insight into the activities, processes and developing work products.
· Failure to establish a software quality assurance (SQA) program as a requirement in a software development contract can result in the delivery of inaccurate, incomplete and unsupportable software and related documentation.
·
·
Mandatory Compliance Requirements
· Reference Chapter 3, Program Management

Concepts

· Quality Assurance: The degree to which a system, component, or process meets customer or user needs or expectations. (IEEE standards 610.12-1990)

· Software Quality Assurance (SQA): The program activities that identifies contractor responsibilities for producing a quality product and provides guidelines for evaluation, acceptance inspection, reporting analysis and corrections of software deficiencies prior to delivery.

Major Steps

1. Plan for SQA activities during the product engineering life cycle.
a. Include reviews, audits, inspections

b. Coordinate with other support activities (See Figure 4) to incorporate reviews of their processes
2. Identify and/or develop required standards, checklists, and style guides for the product development.

3. Objectively evaluate processes and work products against the standards, checklists and style guides.

4. Identify and document noncompliance issues.

5. Provide feedback to project staff and managers on the results of the software quality reviews.

6. Ensure that noncompliance issues are addressed; measure time to closure.

7. Measure planned vs. actual audits and reviews; report number of open non-compliances.

Checklist
	Checklist Item
	(

	Are work products being reviewed against project standards?
	

	Are the SQA evaluations objective?
	

	Are processes being audited against project standards?
	

	Are noncompliance issues that are not resolvable within the project, escalated to upper management for resolution?
	

	Does SQA provide reports to the development staff as well as to the management?
	

	Are records established and maintained of the SQA activities?
	

Resources

· 730-1998 IEEE Standard for Software Quality Assurance Plans

· 1061-1998 IEEE Standard for a Software Quality Metrics Methodology

· 1465-1998 IEEE Standard Adoption of ISO/IEC 12119: 1994 (E) International Standard--Information Technology--Software Packages--Quality Requirements and Testing

· Quality Assurance Institute
· Software Assurance Technology Center

· Software Quality Assurance
· Software Quality Assurance Resources
· Software Quality Assurance Sites
Chapter 6 Risk Management
Chapter 7
	“If you don’t actively attack the risks, they will actively attack you.”

Drivers
· Risk Management is proactive decision making.

· Risk Management helps to avoid catastrophic problems (surprises).

· The chances of a successful program are improved.

Mandatory Compliance Requirements
· DCMA Directive 1, Contract Management "One Book", 0.0 -- Operating Principles.

· DoD Manual 5000.4-M, Cost Analysis Guidance and Procedures.

· DoDD 5000.4, OSD Cost Analysis Improvement Group (CAIG).

· OMB Circular A-109, Major System Acquisition, Para 7, Major System Acquisition Management Objectives.

· Supplement to OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, Appendix Six, Risk Management in the Procurement Phase.
Concepts

· Risk Management
: A software engineering practice with processes, methods and tools for managing risks in a project. It provides a disciplined environment for proactive decision-making to:

· Assess continuously what can go wrong (risks).

· Determine what risks are important to deal with.

· Implement strategies to deal with those risks.

· Risk Statement15: A concise articulation of a program condition leading to risks, with one or more consequences foreseen from that condition.

· Risk15: The possibility of suffering loss.

Major Steps
1. Identify all the risks you can. Review the WBS elements down to the level being considered and identify risk events.
2. Analyze each risk event to determine probability of occurrence and consequences/ impacts, along with any interdependencies and risk event priorities.
3. Plan mitigation actions and develop contingency plans. Translate risk information into decisions and actions (both present and future) and implement those actions.

4. Track the risks. Monitor the risk indicators and actions taken against risks.

5. Control the risks by monitoring them and correcting deviations from planned risk actions.

6. Communicate the risks to the team and management. Provide visibility and feedback data internal and external to your program on current and emerging risk activities.
7. Continuously identify, track and manage risks throughout the life cycle.
Checklist
	Checklist Item
	(

	Are risks identified?
	

	Are mitigation and contingency plans available?
	

	Are management processes applied consistently?
	

	Are management processes proactive, rather than reactive?
	

	Is the program applying software configuration management consistently and appropriately?
	

	Is the program applying product assurance consistently and appropriately?
	

	Is there a Development Plan and is it being used?
	

	Is the schedule realistic?
	

	Are reasonable measures being used to status and analyze the program?
	

Resource

· 1540-2001 IEEE Standard for Software Life Cycle Processes--Risk Management

· DSMC Risk Management Guide for DoD Acquisition; (Fourth Edition); February 2001
· Project Managers Institute
· SEI Risk Management Overview
· Software Program Managers Network
· The Project Management Forum
Chapter 8 Information Assurance

	Information Assurance protects and defends information and information systems.

Drivers
· Information Assurance (IA) aids in maintaining information superiority for our nation.

·
· DoD anti-tamper requirements mandate that programs perform systems engineering activities intended to prevent and/or delay exploitation of critical technologies in U.S. weapon systems.

· Anti-Tamper requirements are typically directed by OSD for top priority programs.

· All acquisition programs (ACAT I, II and III) are required to develop a Program Protection Plan (PPP).

· OIG Report (Report No. D2001-046, February 7, 2001) recommends specific IA practices.

· The Internet is a risky place to conduct business or store assets. Hackers, crackers, snoops, spoofers, spammers, scammers, shammers, jammers, intruders, thieves, purloiners, conspirators, vandals, Trojan horse dealers, virus launchers and rogue program purveyors run loose.”

Mandatory Compliance Requirements

· Assignment of Program Management Office Responsibilities for the Department of Defense Public Key Infrastructure (PKI), April 9, 1999.

· Department of Defense (DoD) Public Key Infrastructure (PKI), May 6, 1999.

· DoD Chief Information Officer Guidance and Policy Memorandum No. 6-8510 “Department of Defense Global Information Grid Information Assurance (16 June 2000).

·
DoDD 5200.28 Security Requirements for Automated Information Systems (AISs) 21 March 1988.

· DoDI 5200.40; DoD Information Technology Security Certification and Accreditation Process (DITSCAP); 30 December 1997.

· DoD 5000.2, Operation of the Defense Acquisition Systems, paragraph 4.7.3.1.5 regarding certification that a system has an appropriate information assurance strategy; paragraph 4.7.3.2.3.2.1.8, paragraph 4.7.3.3.2.7.

· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, Part 6; C6.6 Information Assurance and C6.7 Technology Protection

· DoD 5200.1-M, Acquisition Systems Protection Program, spells out DoD Anti-Tamper (AT) requirements.

· DoD 8510.1-M, Department of Defense information technology security certification and accreditation process application manual (31 July 2000).

· Government Information Security Reform Act (GISRA)

· National Security Telecommunications and Information Systems Security Policy (NSTISSP) No. 11, National Information Assurance Acquisition Policy, January 2000.

· NCSC-TG-024-1; A Guide to the Procurement of Trusted Systems (Purple Book); An Introduction to Procurement Initiators on Computer Security Requirements; Volume 1 of 4; (Version 1); December 1992.

· OMB Memorandum M-00-07, Incorporating and Funding Security in Information Systems Investments, February 28, 2000.

· Policy for Operational Test and Evaluation of Information Assurance, 17 Nov 1999.

· Policy on Operational Test and Evaluation of Electromagnetic Environmental Effects and Spectrum Management, 25 Oct 1999.

· Public Key Infrastructure (PKI) Operating Documents, December 13, 1999.

· Smart Card Adoption and Implementation, November 10, 1999.

Concepts

· Information Assurance
 (IA): "Information Operations that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. This includes providing for the restoration of information systems by incorporating protection, detection, and reaction capabilities."
· System Security Authorization Agreement (SSAA): The formal agreement among the Designated Approving Authority (DAA), the Certification Authority (CA), the user representative, and the program manager to guide actions, document decisions, specify IA requirements, document certification tailoring and level-of-effort, identify potential solutions, and maintain operational systems security.

Major Steps
1. Require that software security be considered as early in the requirements/ design/ development process as possible.

2. Conduct a system risk assessment based on system criticality, threat, and vulnerabilities.

3. Incorporate appropriate countermeasures:

a. Include software configuration management with tight version control and automated support tools.
b. Ensure the software development environment is secure.

c. Use code scanning and malicious code detection techniques throughout the life cycle.
4. Demonstrate the effectiveness of those countermeasures through the certification process.

5. Ensure that the responsible designated approving authority accredits the information system.

6. Incorporate existing, or develop new, protection profiles to consolidate security-related requirements and provide effective management oversight of the overall security program.

7. Brief senior management on a routine basis on security issues and status of the information assurance effort.

8. Prepare a contingency or business continuity plan for use should computer security breach occur.

· Determine which staff are needed

· Establish where they should report

· Be sure to have all telephone numbers

· Plan alternative communications

Checklist
	Checklist Item
	(

	Is security included in systems, software and hardware architecture design and implementation?
	

	Have all current policy requirements been examined to ensure responsibility is defined for enforcing minimum security standards?
	

	Have all current policy requirements been examined to ensure responsibility is defined for isolating users (even executive-level users) whose accounts may have been compromised or at risk?
	

	Have all current policy requirements been examined to ensure responsibility is defined for disconnecting uncontrolled Internet connections?
	

	Do all levels of management understand security planning and implementation?
	

	Are all levels of management held accountable for security planning and implementation?
	

	Does an adequate, enforceable, acceptable, use policy exist enterprise-wide?
	

	Has the current network and security architecture been examined?
	

	Are reviewers alert for designs and implementation decisions that optimize speed of access but may compromise or complicate security measures?
	

	Are security resources defined in the budget?
	

	Are staff fully informed on the security issues associated with the specific programming environments used in the organization?
	

	Do staff understand the potential security ramifications of decisions related to use of individual programming environments?
	

	Have privacy issues associated with log retention and review been addressed in policy?
	

	Is adequate analytical information readily available to critical staff in the event a security attack occurs?
	

	Do staff stay informed about the security issues as technology changes and new threats arise?
	

	Have staff determined the site’s information security posture?
	

	Has an augmentation strategy been developed to provide staff and other resources in the event of a computer security compromise?
	

	Have staff been identified who would be needed should a security breach occur and do they know where they should report?
	

	Are telephone and alternative communications available if electronic communication becomes difficult or impossible?
	

	Do security staff have the time and resources required to perform the necessary system administration functions related to security?
	

	Is there an information assurance strategy for the system that is consistent with DoD policies, standards, and architectures?
	

	Does the strategy include certification and accreditation in accordance with policy?
	

Resources

· 1228-1994 IEEE Standard for Software Safety

· Clinton, W. J. (1998, May 22). The Clinton administration’s policy on critical infrastructure protection: Presidential Directive 64 (PDD 63). Washington, DC: Office of the President of the United States.

· de Leon, R. (2000, June 16). DoD Chief Information Officer guidance and policy memorandum No. 6-8510 “Department of Defense Global Information Grid Information Assurance” (memorandum). Washington, DC: Office of the Deputy Secretary of Defense.

· Department of Defense. (1988, March 21). Security requirements for automated information systems (AISs) (DoDD 5200.28). Washington, DC.

· Department of Defense. (1996, December 15). DoD information security program (DoDD 5200.1). Washington, DC

· Department of Defense. (2000, June). Information technology resources and national security systems. In Department of Defense financial management regulation (DoD 7000.14-R, volume 2B, chapter 18, pp. 18-i through 18-23). Washington, DC

· Department of Defense. (2000, July 31). Department of Defense information technology security certification and accreditation process application manual (DoD 8510.1-M). Washington, DC

· DoD Chief Information Officer Guidance and Policy Memorandum No. 6-8510
· DoDD 5200.28 – Security Requirements for Automated Information Systems (AISs); 21 March 1988
· DoDI 5200.40 DoD Information Technology Security Certification and Accreditation Process (DITSCAP); 30 December 1997
· Computer Emergency Response Team (CSRT() Coordination Center
· Industry Advisory Council’s (IAC) Information Assurance Shared Interest Group (IA SIG)
· Money, A. L. (1999, December 23). DoD information technology systems registration and certification (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

· Money, A. L. (2000, August 12). Department of Defense (DoD) public key infrastructure (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence. Retrieved on July 10, 2001

· National Security Administration’s Information Systems Security Organization
· “Results of the Security in ActiveX Workshop”, Pittsburgh, PA, August 22-23, 2000, CERT(Coordination Center, SEI, Carnegie Mellon University, December 21, 2000

Chapter 9 Life Cycle Models

	A life cycle model identifies well-defined tasks for software project planning and management.

Drivers

·
· A life cycle model provides a detailed operational definition of software engineering management and technical tasks for execution support.

· If you don’t know where you’re going, any road will do.
Mandatory Compliance Requirements

Reference Chapter 3, Program Management

Concepts

· Software Life Cycle: The progression of a software system from development through maintenance and eventually retirement. Life cycles can have as few as three and as many as 21 or more phases. Generally the software development cycle includes the following phases:

	Requirements analysis and specification
	Testing
	Deployment

	
	Unit testing
	Maintenance

	Design
	Integration testing
	Retirement

	Preliminary design
	System testing
	

	Detailed design
	Acceptance Testing
	

	Implementation
	
	

· Types of Life Cycle Models

· Incremental (phased model) (model used most by industry)

· All requirements are essentially known at the beginning of the project and are separated into groups or increments for implementation purposes

· A core set of functions is identified as the first phase and is built and fielded as a cohesive unit

· Subsequent phases provide an opportunity to further define and refine requirements

· Each release adds more functionality

· The software life cycle is repeated for each phase

· Prototyping (or evolutionary development)

· Develops an initial implementation for user feedback

· Refines the prototype for the clarification of user requirements

· The specification, development and validation activities are carried out concurrently with rapid feedback

· Documentation is minimal, but essential

· Generally code lacks robustness

· Implementation compromises are made in order to get prototype working

· Users may misinterpret prototype for real system; prototypes should not be fielded

· Spiral Model (recommended by the 5000 series)

· Risk management is a key element

· Each round of the spiral

i. Identifies the sub-problem which has the highest risk associated with it and

ii. Finds a solution for that problem

· Prototypes are included as a way to reduce risk

· Waterfall Model (linear sequential model) (works best for small, well-defined projects)

· A structured development process

· Expresses the interaction between subsequent phases

· Phases are assumed to be strictly sequential; a modified waterfall provides for overlap and feedback between phases

· Document driven model

· Can use when requirements are well understood

· A working product is not available until late in the project

Major Steps
1. Consider the development techniques and technology to be used by the project team.

2. Review the various life cycle models to determine which is more suitable for the particular application domain.

3. Choose a life cycle model. The following are factors that may be considered when selecting a life cycle model
.

	· Time to market/deployment timeframe
· Requirement stability and understanding

· Technology obsolescence

· Priority of user needs
·
	· Expected system useful life

· Complexity

· Parallel hardware development

· Interfaces to existing and future systems

· Effort size and magnitude

·

Checklist
	Checklist Item
	(

	Was the operational concept analyzed to determine what life cycle method would best support the acquisition?
	

	Are requirements able to be fully defined for the life cycle model selected?
	

	Are funds secured for the development of one or all of the phases or increments, consistent with the selected life cycle model?
	

	Will risks impact the ability of the project to move forward at crucial points in the system development?
	

Resources

· 1074-1997 IEEE Standard for Developing Software Life Cycle Processes

· 12207.0-1996 IEEE/EIA Standard -- Industry Implementation of International Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology--Software life cycle

· 12207.1-1997 IEEE/EIA Guide -- Industry Implementation of International Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology--Software Cycle Processes--Life cycle data

· 12207.2-1997 IEEE/EIA Guide -- Industry Implementation of International Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology--Software life cycle processes--Implementation considerations

· Crosstalk Publication from Hill Air Force Base
· DACS: Cleanroom Software Engineering - Cleanroom Tutorial
· Defense Acquisition University
· DoD Data and Analysis Center for Software
· ISO 12207 and Other Life Cycle Models (Adopted for use by DoD on 27 May 1998)

· STSC: Documentation and MIL-STD 498 (cancelled as of 27 May 1998, but has good information)

· U.S. Software Life Cycle Process Standards
Chapter 10 Reviews

Drivers

· Reviews provide training and experience by introducing team members to work and work styles other than their own.

· Reviews verify that standards defined for the deliverables are met.

· Peer reviews of software code may help identify possible malicious code and prevent its incorporation into the system.

· However, ensure that the following does not occur: “A meeting is too often an event where minutes are taken and hours are wasted.”

Mandatory Compliance Requirements
· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs
· C.2.6.8 Independent Expert Review of ACAT I-III Software Intensive Programs

· C5.2.3.5.6.3 Review of Software-Intensive Systems

· Part 7; C7.3.2 DoD CIO Reviews,

· Part 7; C7.6 Integrated Product Teams (IPTs) in the Oversight and Review Process

· DoDI 5000.2, Operation of the Defense Acquisition System, (Including Change 1), Enclosure 3 Statutory and Regulatory Information, 4 January 2001.

Concepts

Program Reviews

· Independent Expert Program Reviews: A Defense and commercial best practice wherein subject matter experts (SMEs) are employed in conduct of a program review.

· Milestone Decision Review: A review of a technology project or acquisition program by the Milestone Decision Authority (MDA) at each milestone and other points in the process where desired by the MDA.

Technical Reviews

· Critical Design Review (CDR)
: A review that may be conducted to determine that the detailed design satisfies the performance and engineering requirements of the development specification; to establish the detailed design compatibility among the item and other items of equipment, facilities, computer programs and algorithms, and personnel; to assess producibility and risk areas; and to review the preliminary product baseline specifications.
· Preliminary Design Review (PDR)21: A review conducted on each configuration item to evaluate the progress, technical adequacy, proposed software architectures and risk resolution of the selected design approach; to determine its compatibility with performance and engineering requirements of the development specification; and to establish the existence and compatibility of the physical and functional interfaces among the item and other items of equipment, facilities, computer programs, and personnel.

· Peer Review (sometimes called Walkthroughs): An in-process review to find anomalies before they create serious problems; usually performed by a group of peers. Peer reviews are an opportunity to find defects early in the development process and eliminate them.

· Technical Reviews
 (also called In-Process-Reviews (IPRs)): a review used to evaluate the potential software product to determine if the product is suitable for its intended use, that it meets the requirements of the program and does the functions required in a way that is both efficient and effective for the program mission and the users.

Major Steps
Program Reviews

These reviews are derived from the 5000 series and are meant to guide the PM through the review process. Any of these reviews could be used by software developers (government or contractor) and/or be a checklist for a PM to ensure the reviews are being conducted.

Independent Expert Program Reviews (IEPR)

1. Establish a clear written plan.

2. Form the team. The team should contain experts in the application domain, the key technologies, and the parts of the process addressed in the assessment, as well as, a diversity of backgrounds and opinions to achieve balanced decisions.

3. Gather information and become familiar with the program specifics.

4. Plan and conduct visits. On-site visits and interviews must be well planned in order to minimize impact to the program.

5. Generate and report results; cover program strengths, a list of prioritized issues, root causes of risks and problems, current and potential impacts, and actionable recommendations.

6. Follow-up. The IEPR organization should follow-up with the PM to determine if the recommendations have been implemented, and if so, whether they were effective in contributing to the success of the program.

Milestone Decision Reviews (MDR) (may be tailored by the MDA)

1. The PM and Software Acquisition Management (SAM) coordinate Milestone Review preparation with Executive Secretariat. They establish the date for the Program Integrated Product Team (PIPT) MDR Planning Meeting and discuss:

· Milestone review requirements

· Preparation schedule and project MDR briefing date

· Representation on the PIPT

· Documentation, coordination, and briefing requirements

· Desired attendance at MDR briefing

2. Conduct the Milestone Review Planning Meeting.

· Achieve consensus on program documentation and reviews required for Milestone Decision

· Achieve consensus on MDR briefing outline

3. Achieve consensus on the outline of the proposed Acquisition Decision Memorandum (ADM).

4. Task participants to finalize program documentation and draft the MDR briefing.

5. Decide if the documentation review is complete or if the PIPT needs to meet to resolve issues.

6. PM/SAM provides read-ahead briefing charts, draft ADM and key program documentation to PIPT members, PEO and Executive Secretariat.

7. MDR briefing is given to the Milestone Decision Authority.

8. An Acquisition Decision Memorandum is signed after the MDR.

Technical Reviews

Peer Reviews

1. Determine the product(s) to be reviewed. Do as many reviews as possible – they are an opportunity to find defects early in the life cycle and eliminate them.

2. The person responsible for the product development "walks through" the product with a team of peers.

3. Review and evaluate the progress and plans for the developing product and provide immediate feedback.
4. Record action items and complete meeting minutes.
5. Track percent of work products peer reviewed vs. percent of work products scheduled to be peer reviewed on a periodic basis throughout the life of the project. The PM will use this data for managing the project.

6. Determine the defect profile on a periodic basis throughout the life of the project. The PM will use this data for managing the project.
Technical Reviews

1. Determine the software product(s) to be reviewed.

2. Confirm the software product(s) conforms to the requirements.

3. Provide recommendations and various alternatives for the Program/Project Managers.

4. Write review minutes to document action items and decisions.

5. Track percent of work products reviewed vs. percent of work products scheduled to be reviewed on a periodic basis throughout the life of the project. The PM will use this data for managing the project.

6. Determine the defect profile on a periodic basis throughout the life of the project. The PM will use this data for managing the project.

Checklist
	Checklist Item
	(

	Independent Expert Program Reviews

	Is there a documented plan for the review?
	

	Does the plan define the scope of the review?
	

	Does the plan specify how the results will be reported?
	

	Is the data to be collected identified in the plan?
	

	Have review activities been planned so that they have minimum impact on the program?
	

	Will an independent team of software experts, assisted by key project individuals, conduct the review?
	

	Will a follow up visit be scheduled?
	

	Milestone Decision Review

	Are all milestone-decision stakeholders represented?
	

	Has the required IPT member attendance been defined?
	

	Peer Reviews

	Is there a written procedure for Peer Reviews?
	

	Is the product compliant with required standards?
	

	Are defects documented and tracked to closure?
	

	Are action items documented and tracked to closure?
	

	Were meeting minutes completed?
	

	Technical Reviews

	Does part of the Technical Review focus on software development and software management?
	

	Is the software product suitable for its intended use?
	

	Does the software product meet the requirements of the program?
	

	Is the software product both efficient and effective for the program mission and the users?
	

	Has risk management been addressed?
	

	Have security issues been addressed?
	

	Does the software product comply with required standards and regulations?
	

	Were meeting minutes completed?
	

Resources

· 1012-1998 IEEE Standard for Software Verification and Validation

· 1012a-1998 IEEE Standard for Software Verification and Validation-- Content Map to IEEE/EIA 12207.1-1997

· 1028-1997 IEEE Standard for Software Reviews

· August 1999 CROSSTALK The Journal of Defense Software Engineering, “Effective Acquirer/Supplier Software Document Reviews” Gregory T. Daich

· DA Pamphlet 73-7; Software Test and Evaluation Guidelines; 25 July 1997
· DoD 5000.2-R, section 2.6.8
· DSMC Risk Management Guide for DoD Acquisition; (Fourth Edition); February 2001
· GAO-01-510, Best Practices: DoD Teaming Practices Not Achieving Potential Results, 10 April 2001
· Gilb, T. and D. Graham, Software Inspections, Addison-Wesley, 1993

· Rules of the Road: A Guide for Leading Successful Integrated Product Teams
· Systems Engineering Guide; Version 1.1; 5 April 1996, Section 2.3.4.9 and Appendix D
· USSOCOM Directive 70-1; USSOCOM Acquisition Management Procedures, Appendix J; 24 November 1999

Chapter 11 Requirements

	“At least 7 of 10 signs of IS project failures are determined before a design is developed or a line of code is written…”

Drivers
· The major reason that software projects fail is because the requirements were incomplete
.

· A direct corollary is that 56% of software defects can be traced to errors made during the requirements phase of the software project.

· Thus if you don’t get the requirements right – there is a very high likelihood that your software application will fail, no matter what is done in the subsequent phases of the effort.

· Documentation of requirements facilitates post deployment software support.

· If you don’t control your requirements, your requirements will control you.
Mandatory Compliance Requirements
· CJCSI 3170.01B, Requirements Generation System, 15 April 2001.

· CJCSI 6212.01 Interoperability and Supportability of National Security Systems, and Information Technology Systems, 8 May 2000
· DoD 4120.24-M, Defense Standardization Program (DSP) Policies and Procedures.
· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, Part 5, Accessibility Requirements; C5.2.3.5.9, HIS (Human Systems Integration); Appendix 5, C4I Support Plan Mandatory Procedures and Formats.
· FAR 11 Describing Agency Needs.

· OMB Circular A-130, Management of Federal Information Resources, paragraph 8.b(2) Enterprise Architecture
· Section 794d of Title 29, United States Code, “Section 508 of the Rehabilitation Act of 1973”
Concepts

· Acquisition Program Baseline (APB): Based on users’ performance requirements, schedule requirements, and estimate of total program cost. Performance shall include interoperability, supportability and, as applicable, environmental requirements

· Capstone Requirements Document (CRD): A document that captures the overarching requirements for a mission area, forming a family-of-systems (e.g., space control, theater missile defense, etc.) or system-of-systems (e.g., national missile defense).

· Command, Control, Communication, Computers, and Intelligence (C4I) Support Plan (SP): A mechanism to identify and resolve implementation issues related to an acquisition program’s command, control, communications, computers, and intelligence, surveillance, reconnaissance (C4ISR) infrastructure support and information technology (IT) system, including National Security System (NSS), interface requirements.
· Constraints: Restrictions and limitations placed on a project or product; they may be global requirements applied to the entire function or mission such as an operating system or platform on which the application must perform.

· Functional requirements: The capabilities of the product needed to be useful to the functional user or the mission execution (e.g., functionality, data requirements, interface/integration requirements…).

· Key Performance Parameters (KPPs): Those capabilities or characteristics considered most essential for successful mission accomplishment. Failure to meet an ORD KPP threshold can be cause for the concept or system selection to be reevaluated or the program to be reassessed or terminated. Failure to meet a CRD KPP threshold can be cause for the family-of-systems or system-of-systems concept to be reassessed or the contributions of the individual systems to be reassessed
.

· Mission Needs Statement (MNS): Statement of the mission of the organization and how the acquisition will support achievement of that mission.

· Non-functional requirements: The properties or qualities that the product must have (e.g., usability, maintainability, portability, security, cultural and political requirements…). Also called performance requirements.

· Operational Requirements Document (ORD): A formatted document containing operational performance requirements for a proposed concept or system.

· Requirement: A capability which a system or program must be able to accomplish but currently lacks the ability.

· Requirements Traceability Matrix (RTM): A method to document/map relationships between requirements.

· System architecture: The composition of hardware and software components, the structure that interconnects them, and the rules by which they interact.

Major Steps
1. Elicit requirements from the stakeholders. Collect their needs, expectations, constraints, and interfaces from multiple perspectives and individuals.
2. Analyze the requirements.

a. Prioritize the requirements.

b. Determine which requirements are dependent upon other requirements.

c. Find out which requirements are needs vs. wants.

d. Document the rationale for each requirement.

e. Define the high level architecture.

f. Track software product size; include the number of COTS components.

3. Document the requirements.

a. Requirements must be documented and verified with the customer via a review.

b. The final requirements document will include specifications for business level solutions, user and human computer interaction considerations, and baseline software requirements.

c. Update the architecture to reflect documented requirements and external interfaces.

d. The requirements should exhibit certain qualities, such as: conciseness, clarity (unambiguous), understandability, quantifiability, testability, correctness, completeness, and compliance with standards.

4. Manage the requirements. The user community should review and sign-off on the requirements. Requirements do need to change. The key is that they be carefully controlled, approved and documented. (This process should be defined in the project plan.) Therefore, requirements MUST be placed under a change control process.

a. The signed off requirements specifications are baselined documents.

b. Track the defect profile.

c. The requirements should be incorporated into the Acquisition Program Baseline
 (APB), which must be completed for major systems and is strongly recommended for all other efforts.

5. Measure requirements volatility. A 30% change in requirements causes a 100% increase in schedule
.

6. Trace the requirements.

a. Establish and maintain traceability from each requirement.

b. Traceability is a tool to examine any changes for risk implication and impact.

c. Traceability allows for the tracking of changes to the requirements.

d. Requirements should be traceable forward to the design, code and test and traced from test, code and design back to the functional requirements and Contract.

Checklist
	Checklist Item
	(

	Are the users’ needs, wants, and expectations known?
	

	Has each external interface been identified and documented?
	

	Have Key Performance Parameters been identified?
	

	Are system operational requirements clearly specified?
	

	Do the requirements meet (ITMRA) requirements?
	

	Do the requirements include applicable laws and standards?
	

	Are definitions of what the software must do to support system operational requirements clearly specified?
	

	Are system interfaces clearly specified and, if appropriate, prototyped?
	

	Are specific development requirements explicitly defined?
	

	Are specific acceptance and delivery requirements explicitly defined?
	

	Are user requirements agreed to by joint teams of developers and users?
	

	Are the interfaces stable?
	

	Have hardware/software, users, major software component interfaces, etc. been considered?
	

	Have existing and future interfaces been defined, including consideration of those that may be required over time? (This may be in an Interface Control Document (ICD).)
	

Resources

· 830-1998 IEEE Recommended Practice for Software Requirements Specifications

· 1233, 1998 Edition IEEE Guide for Developing System Requirements Specifications

· 1362, 1998 Edition IEEE Guide for Information Technology--System Definition--Concept of Operations

· 1471-2000 IEEE Recommended Practice for Architectural Description of Software-Intensive Systems

· CJCSI 3170.01B; Requirements Generation System; 15 April 2001
· Effective Requirements Practices (ERP), Young, Ralph R., Addison-Wesley, 2001
· International Council on Systems Engineering
· Joint Information for Systems Technology, Testing & Training (JIST3)

· Practical Software and Systems Measurement
· Project Managers Institute
· Software Program Managers Network
· The Project Management Forum
· Tools for System Engineering
Chapter 12 COTS & Non-Developmental Software

No one goes into the empty restaurant
.
Drivers
· Using commercial software provides opportunities for reduced development time.

· Faster insertion of new technology is offered by using commercial software.

· Faster insertion of new technology is offered by using open software system architectures.

Mandatory Compliance Requirements
· Defense Logistics Agency Directive 4105.1, Part 12 – Acquisition of Commercial Items.

· Department of Defense (DoD) Chief Information Officer (CIO) Guidance and Policy Memorandum No. 12-8430--July 26, 2000-- Acquiring Commercially Available Software.
· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, C5.2.3.5.5 Open Systems, C5.2.3.5.7 Commercial Off-The-Shelf Considerations, 10 June 2001

· DFARS 212 -- Acquisition of Commercial Items.
· FAR Part 12, Acquisition of Commercial Items.
Concepts

· Commercial Off The Shelf (COTS): Commercial items that require no unique government modifications or maintenance over the life cycle of the product to meet the needs of the procuring agency.

· Non-Developmental Software (NDS): A non-developmental item is any previously developed item of supply used exclusively for government purposes by a Federal Agency, a State or local government, or a foreign government with which the United States has a mutual defense cooperation agreement; any item described above that requires only minor modifications or modifications of the type customarily available in the commercial marketplace in order to meet the requirements of the processing department or agency.

· Software reuse: The process of implementing or updating software systems using existing software assets.

Major Steps
1. Do a trade-off study to decide whether to use COTS, NDS or custom development. Document how much functionality the COTS or NDS meet. Some guidelines
:
· Explore how much of your functionality can be achieved with COTS (e.g., an acceptable proportion is 80% custom and 20% COTS).
· In general, COTS should be used only for those components that do not require change or modification by the Government

· Modifications to COTS should be made only when there is no other reasonable option

· Ensure that licensing addresses the maintenance of software during its government use life cycle at reasonable cost

· COTS should be required for all functions that can be fulfilled by commercially available software

· Ensure sufficient documentation exists

· “Too much” COTS can increase overall integration risk

· There are testing challenges to be addressed in the overall test plan

2. Do not modify COTS products.

3. Research the vendor to gain confidence in vendor reliability.

4. Learn all you can about the product.

5. Get vendor involvement early.

6. Place all COTS/NDS under configuration control. Version control tools can be used to help control and prevent the introduction of malicious code in new or modified COTS/NDS code.

7. Test the product using a robust verification plan.

8. Recognize the risks and make a mitigation plan.

9. Track the number of COTS/NDS components used in the system.

10. Address sustainment in the system design.

Checklist
	Checklist Item
	(

	Was a trade-off or feasibility study conducted to determine whether to use COTS, NDS or develop new software?
	

	Are the results of the study documented?
	

	Was research into the vendor’s reliability completed?
	

	Will/is the vendor involved in the development activities?
	

	Was the COTS/NDS software tested using a verification plan?
	

	Have the risks of using the chosen COTS/NDI been identified?
	

	Has a mitigation plan for these risks been developed?
	

Resources

· 1420.1-1995 IEEE Standard for Information Technology--Software Reuse--Data Model for Reuse Library Interoperability: Basic Interoperability Data Model (BIDM)

· 1420.1a-1996 IEEE Guide for Information Technology--Software Reuse-Data Model for Reuse Library Interoperability: Asset Certification Framework

· 1430-1996 IEEE Guide for Information Technology--Software Reuse-Concept of Operations for Interoperating Reuse Libraries

· 1517-1999 IEEE Standard for Information Technology-- Software Life Cycle Processes--Reuse Processes

· Assessing the Risks of Commercial-Off-the-Shelf (COTS) Applications
· Audit Report No. 97-219, Lessons Learned from Acquisitions of Modified Commercial Items and Nondevelopmental Items, dated 23 September 1997
· Buying Commercial & Nondevelopmental Items: A Handbook; April 1996
· DACS: Reuse of Software Assets
· DOD Enterprise Software Initiative
· SEI: Monograph Series: Commercial Software in Government Systems

· Software Technology for Adaptable Reliable Systems (STARS)

· Special Report CMU/SEI-94-SR-9 Software Acquisition: A Comparison of DoD and Commercial Practices

Chapter 13 Design

	“The first 50% of a large project schedule is for requirements and design; the remainder is for code and testing.”

Drivers
· The design must be readable guide for developers, testers and maintenance staff.

· Documenting a design provides a foundation for the actual development.

· Documenting a design allows the architecture to be planned rather than ad hoc.

· Design documentation facilitates post deployment software support.

· “There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.”

Mandatory Compliance Requirements
· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, Part 4; C4.3 Analysis of Alternatives, 10 June 2001

· Section 794d of Title 29, United States Code, “Section 508 of the Rehabilitation Act of 1973”
Concepts

·
· Cohesion: A design principle that states that a module should do just one thing, thus requiring little interaction with procedures in other parts of the program.

· Coupling: A measure of the interconnection among software modules. The goal is to reduce coupling among modules.

· Design: The process of taking the requirements (what) and transforming them into a solution (how).

· Design Architecture: The set of software components, modules, objects, etc. with the defined interfaces that shows how they relate to each other.

· Deployment view: All the physical nodes of each task and the allocation of those tasks to the appropriate module.

· Implementation view: A method that looks at the system in terms of all the modules and layers.

· Logical view: a description of the system in terms of major design elements and their interactions.

· Process view: a presentation of the dynamic structure of a system in terms of the tasks, operations, and processes required.

· Technical Analysis of Alternatives (AoA)
: An analysis intended to aid decision making by illuminating the risk, uncertainty, and the relative advantages and disadvantages of alternatives being considered to satisfy a mission need. The AoA shows the sensitivity of each alternative to possible changes in key assumptions (e.g., threat) or variables (e.g., performance capabilities).

Major Steps
1. Decide what design methodology should be followed, such as structured or object-oriented design.

2. Determine what work products should be developed to build the software and document the design.

3. Define and document the design architecture.

4.
5. Trace the requirements to the design elements that implement them and trace from the design elements to the associated requirement.

6. Place all design work products under configuration control.

7. If any requirements change as a result of design activities, document and manage the changes.

Checklist
	Checklist Item
	(

	Has a technical analysis of alternatives been completed?
	

	Are all design elements traced to specific requirements?
	

	Are all the interfaces addressed?
	

	Is the selection of software architecture and design methods traceable to system operational characteristics?
	

	Have all the software units (components, modules, objects, etc.) been identified?
	

	Is the concept of execution among the software units described?
	

Resources

· 1016-1998 IEEE Recommended Practice for Software Design Descriptions

· 1471-2000 IEEE Recommended Practice for Architectural Description of Software-Intensive Systems

· C4ISR Architecture Framework
· Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Version 3.0; May 2000, Volume 1, Chapter 11 Understanding Software Development and Volume 2, Appendix F, Software Architecture

· Joint Technical Architecture
· SEI’s Software Architecture and the Architecture Tradeoff Analysis Initiative
· Software Development Magazine Online
· StickyMinds.com – The online resource for building better software
Chapter 14 Code and Unit Test

	The purpose of this phase is to put the design into well-documented code.

Drivers
· Reliable software that can be easily updated must be developed.

·
·
· Documented source code facilitates software support activities.

 Mandatory Compliance Requirements
· DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, C5.2.3.5.6.1.5, 10 June 2001.

Concepts

· Boundary tests: Testing the limits of the requirements. For example, if 12 units are to be handled in one transaction, check to see what happens if 11 or 13 are passed to the module.

· Code Walkthrough: A peer review of the developed source code.

· Structural testing (or testing-in-the-small)
: Exhaustive execution of all paths of control flow in a module or system. Structural testing techniques include:

· Statement coverage,

· Decision coverage,

· Condition coverage,

· Decision/condition coverage,

· Multiple decision/condition coverage,

· Independent path coverage, and

· Structured tableau.

· Unit Test: The first level of testing; usually handled by individual programmers. This category of testing applies to the smallest defined module of code.

· White box testing: Testing the logic and other programmatic constructs not visible to the user but critical to the efficient and effective operation of the code.

Major Steps
1. Adopt a coding language that complements the design methodology.

2. Adopt a coding standard, or create one, that is appropriate for the selected language. Ensure this standard includes commenting code. (Use of these standards should be verified by SQA.)
3. Develop the code to meet the approved architectural design.
4. Have developers perform peer reviews on new and changed lines of source code and unit test documentation. Use a checklist to standardize the review; include a check for malicious code.

5. Ensure that unit tests are documented.

6. Document results of tests.

7. Measure planned vs. actual peer reviews.

8. Determine the defect profile (see Chapter 3).

9. Track the cumulative number of units scheduled to complete coding and unit testing each month vs. the actual.

10. Beware of the tendency to assume that the code is 90% complete without measurable proof.

Checklist
	Checklist Item
	(

	Are prologue comments included at the beginning of every module?
	

	Are identifier names meaningful (fully and accurately describe what they represent)?
	

	Is the mixing of data types avoided?
	

	Is every variable correctly initialized?
	

	Is every block of code in the body of the program commented? (Every line does not need to be commented.)
	

	Has the code been reviewed to ensure that someone other than the author can understand it?
	

	Are all statements simple and direct?
	

Resources

· 1008-1987 (R1993) IEEE Standard for Software Unit Testing

· Dustin, E., J. Rashka and J. Paul, Automated Software Testing: Introduction, Management, and Performance, Addison-Wesley, 1999

· Randy Rice’s Software Testing Page
· SEI: Unit Analysis and Testing
· Software QA/Test Resource Center
· Software Test Technologies Report
· Testing Resources
· Universal Coding Standard Items
Chapter 15 Integration and System Testing

	“A working program remains an elusive thing of beauty.”

Drivers
· A good testing program significantly helps define the early requirements and design work through early verification and validation.

· A poor testing program can cause mission failure.

· A poor testing program can significantly impact operational performance and reliability.

· Good test documentation facilitates the software support efforts.

Mandatory Compliance Requirements
· Promulgation of DoD policy for assessment, test, and evaluation of information technology systems interoperability (4 December 2000 DoD memorandum)

· CJCSI 6212.01B; Interoperability and Supportability of National Security Systems, and Information Technology Systems; 8 May 2000.

Concepts

· Alpha testing: A preliminary field test accomplished by a few selected users. These are usually members of the developer’s organization but not the developers themselves. Alpha testing is an extension of system testing and may not be appropriate in all cases.

· Behavioral testing (or testing-in-the-large): Focuses on requirements; testing all features mentioned in the specification. Behavioral testing techniques
include:

· Equivalence partitioning,

· Boundary analysis,

· Cause effect graphing,

· Structured tableau, and

· Error guessing.

· Beta testing: The use of the product by selected users outside the developer’s immediate environment. Beta testing is an optional test.

· Black box testing: Testing the functionality from the user’s point of view without regard to how the logic is structured.

· Debugging: The process of isolating and identifying the cause of a software problem, and then modifying the software to correct the problem (not discussed here).

· Integration testing: Testing in which software components, hardware components, or both are combined and tested to evaluate the interaction between them.

· Maintenance testing: The testing of new releases of the software product(s) to ensure that they are properly integrated into the rest of the system and perform the expected additional functionality. Maintenance testing is not an option; it must be done whenever an upgrade or modification of the software occurs.

· Regression testing: The selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements.

· Stress testing: Testing the system at full operational tempo for a pre-defined period of time (4 or 8 or 24 hours) to verify the robustness and reliability of the software.

· System testing: The integration of the software with the specified platform and examines the functionality including the capability, compatibility, stability, performance, security, and resistance to failure.

· Testing: The process of finding defects in relation to a set of predetermined criteria or specifications.

· User acceptance testing: The first test of the complete system in the actual environment. This test is mandatory.

Major Steps
1. Plan for software testing (verification and validation) throughout the entire development life cycle.

2. Develop a Test Evaluation Master Plan
 early in the program.

3. Set up a corrective action process that tracks defects to closure.

4. Track test cases completed vs. test cases planned.

5. For each test to be performed:

a. Write test case specifications,

b. Update the Requirements Traceability Matrix to trace each requirement to a test specification and each test specification back to a specific requirement,

c. Perform the tests, and

d. Write test reports.

e. Remember that “Bugs lurk in corners and congregate at boundaries.”

a.
6. Place all work products under configuration control.
7. Measure planned vs. actual tests completed.

8. Do a defect profile (see Chapter 3).

Checklist
	Checklist Item

	(

	Is Test Evaluation Master Plan complete?
	

	Is the overall strategy for testing defined?
	

	Are the test planning requirements clearly defined?
	

	Are the test planning requirements supportable by the assigned staff?
	

	Are test methods and techniques defined?
	

	Can the test methods and techniques be implemented in the software environment?
	

	Is each test activity traceable to a controlled set of requirements and/or design data?
	

	Are configuration control processes adequate to support testing?
	

	Are quality disciplines adequate to support testing?
	

	Are criteria defined that indicate the end of each type of test?
	

Resources

· 1012-1998 IEEE Standard for Software Verification and Validation

· 1012a-1998 IEEE Standard for Software Verification and Validation-- Content Map to IEEE/EIA 12207.1-1997

· 1465-1998 IEEE Standard Adoption of ISO/IEC 12119: 1994 (E) International Standard--Information Technology--Software Packages--Quality Requirements and Testing

· 829-1998 IEEE Standard for Software Test Documentation

· Joint Information for Systems Technology, Testing & Training (JIST3)

· Software Program Managers Network
· Software Quality Engineering
· Software Testing Institute
· Software Testing Online Resources
· STSC: Software Testing
· The Modeling and Simulation Information Analysis Center (MSIAC)
Chapter 16 Software Deployment

Drivers
· Convert to the new system from the old system.

· Provide training and documentation to users.

Mandatory Compliance Requirement

Reference Chapter 3, Program Management

Concepts

· Customized Software Delivery: The software developer delivers and installs the software and trains the user in the use of the new product

· Deployment: Installation of software into its operational environment.

· Distributed Software Installation: Software is released to an update agent who is responsible for developing a plan for installing the software and must consider the network impact, the installation procedures, and installation software.

· Fielding: See deployment

· Release: The process to interface between the development process and the deployment process. It encompasses all activities needed to prepare and advertise a system so that it can be assembled correctly at another site.
· Software Installation Plan (SIP): A plan for installing software at user sites, including preparations, user training, and conversion from existing systems. The SIP is developed when the developer will be involved in the installation of software at user sites and when the installation process will be sufficiently complex to require a documented plan. For software embedded in a hardware-software system, a fielding or deployment plan for the hardware-software system may make a separate SIP unnecessary.

· Software Transition Plan (STrP): A document that identifies the hardware, software, and other resources needed for life cycle support of deliverable software and describes the developer's plans for transitioning deliverable items to the support agency. The STrP is developed if the software support concept calls for transition of responsibility from the developer to a separate support agency.
Major Steps
	1. Develop a Software Transition Plan. Define:
	2. Develop a Software Installation Plan. Define:

	a. Type of support facilities

b. Hardware support required

c. Software support required

d. Documentation required

e. Personnel needed

f. Other resources

g. Any recommended procedures

h. Training for support personnel

i. Plan for transitioning deliverable software

	a. Overview of installation process

b. Point of Contact

c. Support materials

d. Operator training

e. Describe installation tasks

f. Personnel

g. For each installation site, define:

· Schedule

· Installation team

· Software inventory

· Installation procedures

· Facilities needed

· Data update procedures

Specifics for Users to do:
· Schedule

· Installation procedures

· Data update procedures

	3. Execute the Software Transition Plan.
	8.

	4. Execute the Software Installation Plan
	9.

	5. Establish a problem reporting system; measure the average turnaround time for a problem report form. Keep a defect profile.

	a.

Checklist
	Checklist Item
	(

	Has a transition/installation plan been developed?
	

	Has the down time of particular systems and the total down time of the facility been minimized?
	

	Has the need to run critical systems redundantly while the new software is installed and tested been considered and incorporated into the plan?
	

	Has some software debugging been anticipated and included in the installation schedule?
	

	Does the delivered media contain source code, executable programs, necessary elements of the development environment, such as compilers?
	

Resources

· Aviation and Missile Command (AMCOM) Software Engineering Directorate
· CECOM Software Engineering Center
· Joint Information for Systems Technology, Testing & Training (JIST3)

· Software Program Managers Network
· Software Quality Engineering
· TACOM Life Cycle Software Engineering Center
Chapter 17 Software Maintenance

	“Every program does something right, it just may not be the thing that we want it to do.”

Drivers
· Maintenance can account for over 70% of the life cycle costs for a software system.

· Maintenance is a second chance to apply software engineering best practices to make the system less costly to maintain, more productive and more effective.

· Much legacy code is poorly designed, coded and documented; maintenance is an opportunity to modernize this code.

Mandatory Compliance Requirements

Reference Chapter 3, Program Management

Concepts

· Adaptive Maintenance: The modification of software to properly interface with a changing environment, to include: identifying requirements, designing, coding and testing the software.

· Alien Code: Code that no current staff member developed, for which no development methodology was applied, and documentation and a record of past changes is incomplete.

· Corrective Maintenance: Diagnosis and correction of one or more errors after a program is released for use.

· Maintainability: The ease with which software can be understood, corrected, adapted and/or enhanced.

· Maintenance
: 1. The upkeep of property, necessitated by wear and tear, which neither adds to the permanent value of the property nor appreciably prolongs its intended life but keeps it in efficient operating condition. 2. Preventive maintenance to deter something from going wrong; or corrective maintenance for restoration to proper condition.

· Perfective Maintenance: The implementation of approved recommendations for new capabilities, modification and general enhancements for a successful, fielded software system. This type of maintenance includes the development steps of identifying requirements, designing, coding and testing the software.

· Preventive Maintenance: The modification of software to improve future maintainability or reliability of the software product. This activity is characterized by reverse engineering and re-engineering.

Major Steps
1. Develop a maintenance plan, to include software configuration management and software quality assurance.

2. When a maintenance request is received, if the maintenance environment is unstructured, evaluate the source code using any automated assessment tools that may be available.

3. For systems with a full software configuration and documentation available, evaluate the design documentation.

4. Identify steps to take to implement maintenance requests and prioritize maintenance work to be accomplished.

5. Conduct the steps required to adapt, correct, perfect the software or improve (preventive) the software; measure the total staff hours spent in each maintenance category.

6. Place all work products under configuration control; track the average turnaround time for a maintenance request form and the percentage of maintenance requests by type.

7. Keep a defect profile (see Chapter 3).

Checklist
	Checklist Item
	(

	Has a maintenance plan been developed?
	

	Does the plan define roles, responsibilities and steps to be implemented when a maintenance request is received?
	

	Does the plan incorporate measures to track effort and determine the maintainability of the resulting software?
	

	Does the plan include a method to review, evaluate, and prioritize maintenance requests?
	

	Does the plan include steps to conduct maintenance activities?
	

	Are all work products under configuration control?
	

	Are records kept for each maintenance effort, including the following?
	

	Program identification
	

	Maintenance request number
	

	Start and close dates
	

	Number of source statements
	

	Number of machine code instructions
	

	Programming language used
	

	Program installation date
	

	Number of program runs since installation
	

	Number of processing failures associated with the number of program runs since installation
	

	Program change level and identification
	

	Number of source statements added and deleted by program change
	

	Number of staff hours spent per change
	

	Program change date
	

	Cumulative number of staff hours spent on maintenance
	

Resources

· 1219-1998 IEEE Standard for Software Maintenance

· Aviation and Missile Command (AMCOM) Software Engineering Directorate
· CECOM Software Engineering Center
· Joint Information for Systems Technology, Testing & Training (JIST3)

· Software Program Managers Network
· Software Quality Engineering
· TACOM Life Cycle Software Engineering Center
Appendix A - Acronym List

	Acronym
	Definition

	A&T
	Acquisition and Technology

	ACAT
	Acquisition Category

	ADM
	Acquisition Decision Memorandum

	AF
	Air Force

	AFI
	Air Force Instruction

	AFIT
	Air Force Institute of Technology

	AFMCI
	

	AFPD
	

	AIS
	Automated Information Systems

	ALC-LYS
	

	AMCOM
	Aviation and Missile Command

	AoA
	Analysis of Alternatives

	APB
	Acquisition Program Baseline

	ARCC
	Acquisition Reform Communications Center

	ASD
	Analysis & Support Division

	AT&L
	Acquisition Technology Logistics

	ATA
	Army Technical Architecture

	BIDM
	Basic Interoperability Data Model

	C3I
	Command Control Communications and Intelligence

	C4I
	Command Control Communications Computers Intelligence

	C4ISR
	

	CA
	Certification Authority

	CAIG
	Cost Analysis Improvement Group

	CASE
	Computer Aided Software Engineering

	CCB
	Configuration Control Board

	CDR
	Critical Design Review

	CECOM
	Communications Electronics Command

	CERT
	Computer Emergency Response Team

	CI
	Configuration Item

	CIO
	Chief Information Officer

	CJCS
	Chairman of the Joint Chiefs of Staff

	CJCSI
	Chairman of the Joint Chiefs of Staff Instruction

	CM
	Configuration Management

	CMM
	Capability Maturity Model

	CMMI
	Capability Maturity Model Integrated

	COE
	Common Operating Environment

	COTS
	Commercial Off the Shelf

	CRD
	Capstone Requirements Document

	DACS
	Data and Analysis Center for Software

	DAU
	Defense Acquisition University

	DCMA
	Dry Colors Manufacturers Association

	DFARS
	

	DII
	Defense Information Infrastructure

	DITSCAP
	DoD Information Technology Security Certification and Accreditation Process

	DMS
	Defense Message System

	DoD
	Department of Defense

	DoDD
	Department of Defense Directive

	DoDI
	Department of Defense Instruction

	DSD
	Direct Store Delivery

	DSMC
	Defense Systems Management College

	DSP
	Defense Standardization Program

	DUSD
	Deputy Undersecretary of Defense

	EDI
	Electronic Data Interchange

	ERP
	Effective Requirements Practices

	FOIA
	Freedom of Information Act

	FY
	Fiscal Year

	G&PM
	Guidance and Policy Memorandum

	GAO
	General Accounting Office

	GISRA
	Government Information Security Reform Act

	HDBK
	Handbook

	HIS
	Human Systems Integration

	IA
	Information Assurance

	IAC
	Industry Advisory Council

	ICD
	Interface Control Document

	IEC
	International Electrotechnical Commission

	IEEE
	Institute for Electrical and Electronics Engineers

	IEPR
	Independent Expert Program Reviews

	IPR
	In Process Reviews

	IPT
	Integrated Product Teams

	IS
	Information Systems

	ISO
	International Organization for Standardization

	IT
	Information Technology

	ITMRA
	Information Technology Management Reform Act

	KPP
	Key Performance Parameters

	LOC
	Lines of Code

	MAIS
	Major Automated Information System

	MAISRC
	Major Automated Information System Review Council

	MDA
	Milestone Decision Authority

	MDAP
	Major Defense Acquisition Programs

	MDAPS
	Major Defense Acquisition Programs

	MDR
	Milestone Decision Reviews

	MIL-STD
	Military Standard

	MIS
	Management Information System

	MNS
	Mission Needs Statement

	MSIAC
	Modeling and Simulation Information Analysis Center

	NCSC
	National Computer Security Center

	NDS
	Non Developmental Software

	NSS
	National Security System

	NSTISSP
	National Security Telecommunications and Information Systems Security Policy

	OIG
	Office of Inspector General

	OMB
	Office of Management and Budget

	ORD
	Operational Requirements Document

	OSD
	Office of the Secretary of Defense

	PDR
	Preliminary Design Review

	PEO
	Program Executive Officer

	PIPT
	Program Integrated Product Team

	PKE
	Public Key Enabling

	PKI
	Public Key Infrastructure

	PM
	Program Managers

	PMI
	Project Management Institute

	PPP
	Program Protection Plan

	RFP
	Request for Proposal

	RTM
	Requirements Traceability Matrix

	S&T
	Science and Technology

	SAF
	Secretary of the Air Force

	SAM
	Software Acquisition Management

	SCCB
	Software Configuration Control Board

	SCM
	Software Configuration Management

	SEI
	Software Engineering Institute

	SEL
	Software Engineering Laboratory

	SIG
	Special Interest Group

	SIP
	Software Installation Plan

	SME
	Subject Matter Experts

	SP
	Support Plan

	SQA
	Software Quality Assurance

	SSAA
	System Security Authorization Agreement

	STARS
	Software Technology for Adaptable Reliable Systems

	STSC
	Software Technology Support Center

	TACOM
	Tank Automotive and Armaments Command

	TG
	Task Group

	URL
	Uniform Resource Locator

	USAF
	U.S. Air Force

	USC
	U.S. Code

	USSOCOM
	United States Special Operation Command

	WBS
	Work Breakdown Structure

Appendix B - Relevant Policies & Standards

	· AF Manual 99-111; Command, Control, Communications, Computers and Intelligence (C4I) Test and Evaluation Process; 1 March 1996

	· AFI 10-601; Mission Needs and Operational Requirements Guidance and Procedures

	· AFI 35-101, Public Affairs Wartime Planning, Training, and Equipping

	· AFMCI 21-301, Air Force Material Command Technical Order System Implementing Policies, dated 15 Jan 1997

	· AFPD 10-6; Operational Requirements; Mission Needs and Operational Requirements

	· AFPD 35-1, Public Affairs Management

	· AFPD 90-11; Planning Systems

	· Air Force Human Systems Integration Officer

	· Army Technical Architecture (ATA)

	· ASD (C3I) Memo, December 23, 1999--DoD Information Technology Systems Registration and Certification

	· ASD (C3I) Memo, November 7, 2000--Policy Guidance for Use of Mobile Code Technologies in Department of Defense Information Systems

	· ASD(C3I) Memo, February 21, 2001, DoD Information Technology Registry

	· ASD(C3I) Memo, July 14, 2000--Implementation of the Recommendations of the Information Assurance and Information Technology Integrated Process Team on Training, Certification and Personnel Management in the Department of Defense

	· ASD(C3I) Memo, July 21, 2000, Accessibility of DoD Web Sites to People with Disabilities

	· ASD(C3I) Memo, July 25, 1997--Information Technology Investment Management Insight Policy for Acquisition

	· ASD(C3I) Memo, March 30, 2001--Designation of Major Automated Information Systems Acquisition Programs

	· Assignment of Program Management Office Responsibilities for the Department of Defense Public Key Infrastructure (PKI), April 9, 1999

	· CIO Council, A Practical Guide to Federal Enterprise Architecture, Version 1.0, February 2001

	· CIO Council, Architecture Alignment and Assessment Guide, October 2000

	· CIO Council, Federal Enterprise Architecture Framework, Version 1.1, September 1999

	· CJCS Memo, Joint Mission Areas to Organize the Joint Operational Architecture, 6 September 2000

	· CJCSI 3170.01A, Requirements Generation System

	· CJCSI 6212.01.B, Interoperability and Supportability of National Security Systems, and Information Technology Systems, 8 May 2000

	· DA Pamphlet 73-7; Software Test and Evaluation Guidelines; 25 July 1997

	· DCMA Directive 1, Contract Management "One Book", 0.0 -- Operating Principles

	· Defense Logistics Agency Directive 4105.1, Part 12 – Acquisition of Commercial Items

	· DFARS 212 -- Acquisition of Commercial Items

	· DoD 4120.24-M, Defense Standardization Program (DSP) Policies and Procedures

	· DoD 8510.1-M, DoD Information Technology Security Certification and Accreditation Process, 31 July 2000

	· DoD C4ISR Architecture Framework, Version 2.0, 18 December 1997

	· DoD CIO Guidance and Policy Memorandum No. 12-8430, July 26, 2000—Acquiring Commercially Available Software

	· DoD Data Architecture, January 2001 release

	· DoD Directive 5000.1 The Defense Acquisition System (March 15, 1996, incorporating Change 1, May 21, 1999).

	· DoD Joint Technical Architecture, Version 4.0, 2 April 2001

	· DoD Manual 5000.4-M, Cost Analysis Guidance and Procedures

	· DoD Memo, Promulgation of DoD Policy for Assessment, Test, and Evaluation of Information Technology Systems Interoperability, 4 December 2000

	· DoD Regulation 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPS) and Major Automated Information System (MAIS) Acquisition Programs, 10 June 2001

	· DoD Technical Reference Model User Guide, Version 1.0, 10 April 2001

	· DoD Technical Reference Model, Version 2.0, 9 April 2001

	· DoDD 3405.1; Computer Programming Language Policy; April 2, 1987

	· DoDD 5000.1, The Defense Acquisition System

	· DoDD 5000.4, OSD Cost Analysis Improvement Group (CAIG)

	· DoDD 5010.19, Configuration Management

	· DoDD 5015.2, DoD Records Management, 6 March 2000

	· DoDD 5200.1, DoD Information Security Program, 15 December 1996

	· DoDD 5200.28, Security Requirements for Automated Information Systems (AISs), 21 March 1988

	· DoDD 5400.11, DoD Privacy Program, 13 December 1999

	· DoDD 5400.7, DoD Freedom of Information Act (FOIA) Program, 29 September 1997

	· DoDD 8000.1, DoD Information Management, 27 October 1992

	· DoDD 8190.1, DoD Logistics Use of Electronic Data Interchange (EDI) Standards, 5 May 2000

	· DoDD 8190.2, The Department of Defense Electronic Business/Electronic Commerce (EB/EC) Program, 23 June 2000

	· DoDI 5000.2, Operation of the Defense Acquisition System

	· DoDI 5200.40, DoD Information Technology Security Classification and Accreditation Process (DITSCAP), 30 December 1997

	
· DSD Memo, June 2, 1997--Implementation of Subdivision E of the Information Technology Management Reform Act of 1996 (Public Law 104-106)

	· DUSD (S&T) Memo, November 2, 1999--Software Evaluations for ACAT I Programs

	· FAR -- Part 39; Acquisition of Information Technology; (FAC 97-27); 25 June 2001

	· FAR 11 Describing Agency Needs and FAR 39 Acquisition of Information Resources

	· FAR Part 12, Acquisition of Commercial Items

	· Federal Register, December 21, 2000—Electronic and Information Technology Accessibility Standards

	· Federal Register, January 22, 2001—FAR; Electronic and Information Technology Accessibility

	· GIG Architecture, Version 1.0 (UNCLASSIFIED), January 2001

	· Information Technology Management Reform Act (ITMRA), The National Defense Authorization Act for Fiscal Year 1996

	· Joint C4ISR Decision Support Center

	· Joint Vision 2020

	· National Security Telecommunications and Information Systems Security Policy (NSTISSP) No. 11, National Information Assurance Acquisition Policy, January 2000

	· OMB Circular A-109, Major System Acquisition, Para 7, Major System Acquisition Management Objectives

	· OMB Circular A-130; Management of Federal Information Resources; Revised -- February 8, 1996

	· OMB Memorandum M-00-07, Incorporating and Funding Security in Information Systems Investments, February 28, 2000

	· OSD Memo, May 1, 1997—Requirements for Compliance with Reform Legislation for Information Technology (IT) Acquisitions (Including National Security Systems)

	· Policy for Operational Test and Evaluation of Information Assurance, 17 Nov 1999

	· Policy on Operational Test and Evaluation of Electromagnetic Environmental Effects and Spectrum Management, 25 Oct 1999

	· Program Manager's Bill of Rights and Responsibilities

	· Public Law 105-220, Title IV—Rehabilitation Act Amendments of 1998, Section 508 Amendments (07 August 1998)

	· SAF/AQ, Air Force Instruction 63-123, Evolutionary Acquisition for C2 Systems,” 1 April 2000

	· Supplement to OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, Appendix Six, Risk Management in the Procurement Phase

	· USAF, AFI 99-101, Developmental Test and Evaluation

	· USAF, AFI 99-102, Operational Test and Evaluation

	· USD (A&T) Memo, March 22, 1999--Designation of Management Oversight for Acquisition Software

	· Warner Robins Air Logistics Center, Software Engineering Division (WR/ALC-LYS)

Appendix C - Best Practices

Software Program Managers Network
16 CRITICAL SOFTWARE PRACTICES™

for Performance-based management

PROJECT INTEGRITY
1. Adopt Continuous Program Risk Management
2. Estimate Cost And Schedule Empirically
3. Use Metrics To Manage
4. Track Earned Value
5. Track Defects Against Quality Targets
6. Treat People As The Most Important Resource

CONSTRUCTION INTEGRITY
7. Adopt Life Cycle Configuration Management
8. Manage And Trace Requirements
9. Use System-Based Software Design
10. Ensure Data And Database Interoperability
11. Define And Control Interfaces
12. Design Twice, Code Once
13. Assess Reuse Risks And Costs

PRODUCT STABILITY AND INTEGRITY
14. Inspect Requirements And Design
15. Manage Testing As A Continuous Process
16. Compile And Smoke Test Frequently

Best Manufacturing Practices Center of Excellence
SEI’s Software Acquisition Management Best Practices
Guidelines for Successful Acquisition and Management of Software Intensive Systems, Version 3.0 May 2000
SEI’s Capability Maturity Model for Software
SEI’s Capability Maturity Model-Integrated (CMMI)

Software Process Improvement and Capability determination (SPICE)
Appendix D - Tools

Software Methods & Tools
Software Tools Listed by Category - This web page has links to existing software applications useful in development or support of command & control systems.

StickyMinds.com Tools Guide
The Software Tools Bulletins
From the Software Engineering Institute:

A Quick Guide to Information about Software Environments, Configuration Management, and CASE
An Approach for Selecting and Specifying Tools for Information Survivability Robert Firth Barbara Fraser Suresh Konda Derek ...

Software Engineering Laboratory Series

Annotated Bibliography of Software Engineering Laboratory (SEL) Literature - Software Tools

Appendix E - Lessons Learned

SOFTWARE PROGRAM MANAGERS NETWORK

LESSONS LEARNED -- CURRENT PROBLEMS
1. Systems Engineering
2. Safety and Security
3. Continuous Risk Management
4. Requirements Management
5. Planning and Tracking
6. Products Required for Delivery
7. Interface Management
8. Visibility
9. Cost Estimation
10. Schedule Compression
11. Rework
12. Reuse
13. Architecture
14. Quality
15. Retaining Technical Staff
16. Approach to Achieving Higher SEI Rating
17. Integrated Product Teams
18. Configuration Management
19. Test
20. Metrics
21. Cost of Maintenance
22. Software Development Environment/Tool Utility
23. Contract/RFP Management
24. Commercial-off-the-Shelf (COTS) Products
Appendix F - Education and Training

Air Force Institute of Technology (AFIT)
Course for Software Acquisition Web Site or C-SAWS
DAU Systems Engineering Courses
Defense Acquisition Deskbook - Education and Training
Defense Acquisition University (DAU) Courses
Defense Acquisition University and Acquisition Reform Communications Center (ARCC)
Defense Contract Management Agency
Defense Systems Management College
Government Education and Training Network
Appendix G - Selected Laws, Policies, and Procedures Relative to Information Management in DoD

Memoranda

Brubaker, P. (2001, February 21) DoD information technology (IT) registry (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Cohen, W.S. (1997, June 2). Implementation of subdivision E of the Clinger-Cohen Act of 1996 (Public Law 104-106) (memorandum). Washington, DC: Office of the Secretary of Defense.

Cook, D. O. (2000, July 13). Privacy policies and data collection on DoD public web sites (memorandum). Washington, DC: Director of Administration and Management, Office of the Secretary of Defense.

de Leon, R. (2000, July 14). Implementation of the recommendations of the information assurance and information technology integrated process team on training, certification and personnel management in the department of defense (memorandum). Washington, DC: Office of the Deputy Secretary of Defense.

Etter, D. M. (1999, November 2). Software evaluations for ACAT I programs (memorandum). Washington, DC: Office of the Director of Defense Research and Engineering.

Hamre, J., Kaminski, G., and Paige, E., Jr. (1997, May 1). Requirements for compliance with reform legislation for information technology (IT) acquisitions (including national security systems) (memorandum). Washington, DC: Office of the Secretary of Defense.

Hamre, J. (1998, December 7). Web site administration (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from:
Hamre, J. (1999, November 10). Smart card adoption and implementation (memorandum). Washington, DC: Office of the Deputy Secretary of Defense.
Money, A. L. (1998, July 28). Elimination of the major automated information system review council (MAISRC) (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A.L. (1999, March 19). Combating computer software piracy (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A. L. (1999, December 23). DoD information technology systems registration and certification (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A. L. (2000, August 12). Department of Defense (DoD) public key infrastructure (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A. L. (2000, November 7). Policy guidance for use of mobile code technologies in department of defense information systems (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A. L. (2001, March 30). Designation of major automated information systems acquisition programs (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Money, A. L. (2001, April 6). Windows 2000 guidance update (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Oliver, D. (1999, March 22). Designation of management oversight for acquisition software (memorandum). Washington, DC: Office of the Under Secretary of Defense for Acquisition and Technology.

Paige, E., Jr. (1997, April 29). Use of the Ada programming language (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Valletta, A. M. (1997, July 25). Information technology investment management insight policy for acquisition (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

Wells, L., II. (2001, May 17). Public key enabling (PKE) of applications, web servers, and networks for the Department of Defense (DoD) (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence.

 HYPERLINK "http://www.c3i.osd.mil/org/sio/ia/diap/documents/HD_DSD_Amend052901.pdf"

Wells, L., II. (2001, June 4). Disposition of unclassified DoD computer hard drives (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence
.

Wolfowitz, P. (2001, April 26). DoD web site administration policy (memorandum). Washington, DC: Office of the Deputy Secretary of Defense.

Wolfowitz, P. (2001, May 29). Disposition of unclassified DoD computer hard drives (memorandum). Washington, DC: Office of the Deputy Secretary of Defense.

Other

Clinton, W. J. (1998, May 22). The Clinton administration’s policy on critical infrastructure protection: Presidential Directive 64 (PDD 63). Washington, DC: Office of the President of the United States.

Department of Defense. (1999, October). Information management (IM) strategic plan, information superiority (Version 2.0). Washington, DC: Department of Defense Chief Information Officer. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/ciolinks/references/itmstpln/itmstpln-memo.html
Federal Information Technology (Executive Order 13011 of July 16, 1996), 61 Fed. Reg. 37657 (1996).

National Infrastructure Assurance Council (Executive Order 13130 of July 14, 1999), 64 Fed. Reg. 38583 (1999).

Office of Management and Budget. (2000, November). Management of federal information resources (Circular A-130). Washington, DC: U.S. Government Printing Office.

Office of Management and Budget. (2000, July 11). Capital asset plan and justification (Circular A-11, part 3). Washington, DC: U.S. Government Printing Office. Retrieved on July 10, 2001, from: http://www.whitehouse.gov/omb/circulars/a11/s300_2.pdf
Office of Management and Budget. (2000, July 11). Preparation and submission of strategic plans, annual performance plans, and annual program performance reports (Circular A-11, part 2). Washington, DC: U.S. Government Printing Office. Retrieved on July 10, 2001, from: http://www.whitehouse.gov/omb/circulars/a11/00toc.html
Office of Management and Budget. (1997, July). Capital programming guide (Version 1.0, supplement to part 3 of circular No. A-11). Washington, DC: U.S. Government Printing Office. Retrievable from: Retrieved on July 10, 2001, from: http://www.whitehouse.gov/omb/circulars/a11/cpgtoc.html
Paperwork Reduction Act of 1995, 44 U.S.C. § 3501 et seq.

Electronic Records and Signatures in Commerce Act (2000), 15 U.S.C. § 7001 et seq.
National Defense Authorization Act for FY 1999, 10 U.S.C § 2223.

Clinger-Cohen Act of 1996, Division E, 40 U.S.C. § 1401 et seq.
DoD Directives, Instructions, Regulations, Manuals

Department of Defense. (1987, April 2). Computer programming language policy (DoDD 3405.1). Washington, DC: Author.

Department of Defense. (1988, March 21). Security requirements for automated information systems (AISs) (DoDD 5200.28). Washington, DC: Author.

Department of Defense. (1991, September 26). DoD data administration (DoDD 8320.1). Washington, DC: Author.

Department of Defense. (1992, October 27). Defense information management program (DoDD 8000.1). Washington, DC: Author.

Department of Defense. (1994, March). Data administration procedures (DoD 8320.1-M). Washington, DC: Author.

Department of Defense. (1996, December 15). DoD information security program (DoDD 5200.1). Washington, DC: Author.

Department of Defense. (1997, September 29). DoD Freedom of Information Act (FOIA) program (DoDD 5400.7). Washington, DC: Author.

Department of Defense. (1997, December 30). DoD information technology security classification and accreditation process (DITSCAP) (DoDI 5200.40). Washington, DC: Author.

Department of Defense. (1998, April). Data standardization procedures (DoD 8320.1-M-1). Washington, DC: Author.

Department of Defense. (1999, December 13). DoD privacy program (DoDD 5400.11). Washington, DC: Author.

Department of Defense. (2000, March 6). DoD records management (DoDD 5015.2). Washington, DC: Author.

Department of Defense. (2000, May 5). DoD logistics use of electronic data interchange (EDI) standards (DoDD 8190.1). Washington, DC: Author.

Department of Defense. (2000, June). Information technology resources and national security systems. In Department of Defense financial management regulation (DoD 7000.14-R, volume 2B, chapter 18, pp. 18-i through 18-23). Washington, DC: Author.

Department of Defense. (2000, June 23). The Department of Defense (DoD) electronic business/electronic commerce (EB/EC) program (DoDD 8190.2). Washington, DC: Author.

Department of Defense. (2000, July 31). Department of Defense information technology security certification and accreditation process application manual (DoD 8510.1-M). Washington, DC: Author.

Department of Defense. (2000, October 23). The defense acquisition system (DoDD 500.1). Washington, DC: Author.

Department of Defense. (2001, January 4). Operation of the defense acquisition system (DoDI 5000.2). Washington, DC: Author.

Department of Defense. (2001, June). Mandatory procedures for major defense acquisition programs (MDAPs) and major automated information system (MAIS) acquisition programs (DoD 5000.2-R). Washington, DC: Author.
Accessibility

Bush, G. W. (2001, February). New freedom initiative. Washington, DC: Office of the President of the United States of America. Retrieved on July 10, 2001, from: http://www.whitehouse.gov/news/freedominitiative/freedominitiative.pdf
Electronic and Information Technology Accessibility Standards, 65 Fed. Reg. 80500 (2000) (to be codified at 36 C.F.R. § 1194).

Federal Acquisition Regulation; Electronic and Information Technology Accessibility, 66 Fed. Reg. 7166 (2001) (to be codified at 48 C.F.R. § 2, 7, 10, 11, 12, and 39).

Money, A. L. (2000, July 21). Accessibility of DoD web sites to people with disabilities (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/accessibility.pdf
Workforce Investment Act of 1998, Pub. L. 105-220, Title IV, Rehabilitation Act Amendments of 1998, § 508 Amendments.

Architecture and Interoperability

Chairman of the Joint Chiefs of Staff. (2001, April 15). Requirements generation system (CJCSI 3170.01B). Washington, DC: Author.

Chairman of the Joint Chiefs of Staff. (2000, May 8). Interoperability and supportability of national security systems, and information technology systems (CJCSI 6212.01B). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www.dtic.mil/doctrine/jel/cjcsd/cjcsi/6212_01b.pdf
Chairman of the Joint Chiefs of Staff. (2000, June). Joint Vision 2020. Washington, DC: U. S. Government Printing Office. Retrieved on July 10, 2001, from: http://www.dtic.mil/jv2020/
Chairman of the Joint Chiefs of Staff. (2000, September 6). Joint mission areas to organize the Joint Operational Architecture (memorandum). Washington, DC: Chairman of the Joint Chiefs of Staff.

Department of Defense. (1997, December). C4ISR architecture framework (Version 2.0). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/index.htm
Department of Defense (2000, October). DoD architecture framework--draft (Version 2.1). Washington, DC: Author.
Department of Defense. (2000, December 4). Promulgation of DoD policy for assessment, test, and evaluation of information technology systems interoperability (memorandum). Washington, DC: Author. Retrieved on July 10, 2001, from: Department of Defense. (2001, April). Department of Defense joint technical architecture (Version 4.0). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www-jta.itsi.disa.mil/
Department of Defense. (2001, April). Department of Defense technical reference model (Version 2.0). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www-trm.itsi.disa.mil/
Department of Defense. (2001, April). Department of Defense technical reference model user guide (Version 1.0). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www-trm.itsi.disa.mil/
Department of Defense. (2001, June). C4I support plan mandatory procedures and formats. In Mandatory procedures for major defense acquisition programs (MDAPs) and major automated information system (MAIS) acquisition programs (DoD 5000.2-R, appendix E). Washington, DC: Author.

DoD Data Architecture (January 2001 release) [Electronic data files]. Washington, DC: Department of Defense [Producer and Distributor]. Retrieved on July10, 2001, from: http://www-datadmn.itsi.disa.mil/datadmn/dda/ddmhmpg.htm
Federal Chief Information Officer’s Council. (1999, September). Federal enterprise architecture framework (Version1.1). Washington, DC: Author. Retrieved on July 10, 2001,

Federal Chief Information Officer’s Council. (2000, October). Architecture alignment and assessment guide. Washington, DC: Author. Retrieved on July 10, 2001, from: http://cio.gov/Documents/arch_align_assess_Oct_2000.pdf
Federal Chief Information Officer’s Council. (2001, February). A practical guide to federal enterprise architecture (Version 1.0). Washington, DC: Author. Retrieved on July 10, 2001, from: http://www.itpolicy.gsa.gov/mke/archplus/group.htm
GIG Architecture (Version 1.0, UNCLASSIFIED) [Electronic data file]. (2001, January). Washington, DC: Department of Defense [Producer and Distributor]. Retrieved on July 10, 2001, from: http://www.dsc.osd.mil/dsc/gig/GIG_Arch_v1.0_(Final)/GIG_Arch_v1.0_(Final).pdf
DoD Guidance and Policy Memoranda

de Leon, R. (2000, June 16). DoD Chief Information Officer guidance and policy memorandum No. 6-8510 “Department of Defense Global Information Grid Information Assurance (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gigia061600.pdf
de Leon, R. (2000, August 24). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 4-8460—Department of Defense Global Information Grid Networks (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gig4-8460-082400.pdf
de Leon, R. (2000, August 24). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 7-8170-082400—Global Information Grid Information Management (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gig7-8170-082400.pdf
de Leon, R. (2000, August 24). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 10-8460—Network Operations (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gig10-8460-082400.pdf
Hamre, J. J. (2000, March 31). DoD Chief Information Officer Executive Board (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001,from: http://www.c3i.osd.mil/org/cio/memo_cio_exec_board3-31-00.pdf
Hamre, J. J. (2000, March 31). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 8-8001—Global Information Grid (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/depsecdememo_gig3-31-00.pdf
Money, A. L. (1998, November 9). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 1-8130-110998 guidance and policy memorandum (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gpm1_8130.pdf
Money, A. L. (1999, April 23). DoD Chief Information Officer (CIO) guidance and policy memorandum No. 3-8460-042399—Defense Message System (DMS) Enterprise-Wide Messaging (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/gpm3_8460.pdf
Money, A. L. (2000, July 26). Department of Defense (DoD) Chief Information Officer (CIO) guidance and policy memorandum No. 12-8430--July 26, 2000—acquiring commercially available software (memorandum). Washington, DC: Office of the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/esi0726.pdf and http://www.don-imit.navy.mil/esi/
Wolfowitz, P. (2001, April 6). DoD Chief Information Officer (CIO) guidance and policy memorandum (G&PM) No. 11-8450—Department of Defense (DoD) Global Information Grid (GIG) Computing (memorandum). Washington, DC: Office of the Deputy Secretary of Defense. Retrieved on July 10, 2001, from: http://www.c3i.osd.mil/org/cio/doc/GPM11-8450.pdf
Acquisition

Integration Test

Systems Engineering Process

Project Engineering Process

Deployment and Maintenance

Hardware

Software

Communications/Networks

C

O

N

C

E

P

T

R

E

T

I

R

E

M

E

N

T

Requirements

Software Product

?

Inputs:

Proposal

Performance Based Contract

Outputs:

Project Plan

Schedule

Product

Program Management

INPUTS:

Interviews

Surveys

Contract

OUTPUTS/INPUTS:

Requirements Specification(s)

Requirements Traceability Matrix

OUTPUTS/INPUTS (to/from SCM):

Requirements Specification(s) (updated)

Requirements Traceability Matrix (updated)

COTS/NDS to use

Action Items

Recommendations

Alternatives

Review

INPUT:

Standards

OUTPUTS/INPUTS:

Requirements Specification(s)

Requirements Traceability Matrix

COTS/NDS to use

OUTPUTS (to SCM):

Surveys

Contract

Acquisition Program Baseline

OUTPUT (to SCM):

Summary Report

Design

OUTPUTS/INPUTS:

Requirements Specification(s)

Requirements Traceability Matrix

Architecture

Design Documentation

OUTPUTS/INPUTS (to/from SCM):

Architecture (updated)

Design Documentation (updated)

Requirements Traceability Matrix

Action Items

Recommendations

Alternatives

Review

INPUT:

Standards

OUTPUTS (to SCM):

Summary Report

Requirements Specification(s) (updated)

A

A

Code & Unit Test

OUTPUTS/INPUTS (to/from SCM):

Source code

Unit test results

Review

OUTPUTS (to SCM):

Summary Report

Unit test results

OUTPUTS/INPUTS (to/from SCM):

Source code

Integration and System Testing

INPUTS (from SCM):

Test Cases

Test Procedures

OUTPUTS/INPUTS:

Test Report

Change Requests

INPUT:

Standards

Maintenance

INPUT:

Maintenance request

OUTPUT/INPUT (to SCM):

Updated software

Deployment

OUTPUTS/INPUTS (from SCM):

Approved release of software system

Review

Start

Requirements

Research & Decide on COTS/NDI

OUTPUTS (to SCM):

Test Report

Change Requests

Action Items

Recommendations

Inputs:

Proposal

Performance Based Contract

Outputs:

Project Plan

Schedule

Product

Program Management

Software Configuration Management

Inputs:

Work Products

Tools

Outputs:

Baselines

Status Reports

Software Quality Assurance

Inputs:

Work Products

Processes

Outputs:

Feedback

Status Reports

Software Quality AssuranceRisk Management

Inputs:

Work ProductsRisks,

Risk Processesseverity,

Contingencies

Outputs:

FeedbackRisk Management

Status ReportsPlan

Inputs:

SSAA

Requirements Document

Outputs:

Accredited Information System

Security Contingency Plan

Information Assurance

Inputs:

Requirements Specs

Complexity

Outputs:

Software System

Choose Life Cycle Model

Review

Inputs:

Work Product

Standards

Associated work products

Outputs:

Action Items

Summary Report

Recommendations

Alternatives

Reviews help to reduce cost, schedule and defects.

Inputs:

Interviews

Surveys

Contract

Outputs:

Requirements Specification(s)

Requirements Traceability Matrix

Acquisition Program Baseline

Requirements

Research & decide

Inputs:

Requirements

Outputs:

COTS/NDS

 decision

Design

Inputs:

Requirements

Outputs:

Architecture

Design documentation

Code & Unit Test

Inputs:

Design

 Documentation

Outputs:

Source code

Unit test results

Integration and System Testing

Inputs:

Work Product under SCM control

Test Cases

Test Procedures

Outputs:

Test Report

Change Reports

Released version of the software product

Installed software product

Operational software system.

Deployment introduces the entire user community to the new software product.

Software Deployment & Maintenance

Inputs:

Maintenance request

New or changed software system

Outputs:

Adapted, corrected,

perfective or preventive software

� Ben Franklin

� Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On Time, Within Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992.

� Jones, Capers, Applied Software Measurement, McGraw-Hill, Inc, New York, 1991.

4 Sponsored by the Office of the Under Secretary of Defense � HYPERLINK "http://www.acq.osd.mil/acqweb/index.html" �OUSD(AT&L)�

� Yoda from Star Wars

� (DoD Directive S-3600.1, "Information Operations (IO) (U)," December 6, 1996, NSTISSI No. 4009, "National Information Systems Security (INFOSEC) Glossary," January 1999)

� Defense Acquisition Acronyms and Terms (2001)

� MIL-HDBK-881

� The Condensed Guide to Software Acquisition Best Practices, Software Program Managers Network, June 1998

�The first 9 questions were extracted from the Project Analyzer, Software Program Managers Network, April 2000

� Heraclitus, 500 B.C.

� Defense Acquisition Acronyms and Terms (2001)

� Yogi Berra

� SEI’s Risk Management Paradigm.Tom Gilb

� Tom Gilb

� Van Scoy, Roger L. Software Development Risk: Opportunity, Not Problem. Software Engineering Institute, CMU/SEI-92-TR-30, ADA 258743, September 1992.

� Dorothy Denning and Peter Denning

� Dorothy Denning and Peter Denning

� (DoD Directive S-3600.1, "Information Operations (IO) (U)," December 6, 1996, NSTISSI No. 4009, "National Information Systems Security (INFOSEC) Glossary," January 1999)

� Quann, Eileen, personal communication to Lloyd K. Mosemann, II, September 1995.

� Author unknown

� Defense Acquisition Acronyms And Terms (2001)

� Systems Engineering Guide; Version 1.1; 5 April 1996, Section 2.3.4.9 and Appendix D provides an excellent definition of a ‘technical review’.

�John Reel

� The Standish Group, “The Scope of Software Development Project Failures,” 1995

� CJCSI 3170.01B; Requirements Generation System; 15 April 2001

� Reference DoD 5000.2-R, Section 1.4.

� Ivy Hooks

� Quotations from Chairman David: A Little Red Book of Truths to Enlighten and Guide on the Long March Toward the COTS Revolution, SEI, 1998

� Glossary of Defense Acquisition Acronyms and Terms (2001)

� SAM-201/ISAM Lesson 12 version 2.3, COTS and Software Reuse Issues

� B. Boehm & C. Jones

� C.A.R. Hoare

� C.A.R. Hoare

� Defense Acquisition Acronyms and Terms. (2001)

� Pressman, Roger A., Software Engineering, A Practitioner’s Approach, New York: McGraw-Hill, 2001, Section 13.5.2.

� Pressman, Section 13.5.3.

� Defense Acquisition Acronyms and Terms. (2001)

� Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and Tools for Assuring Quality Through Testing, Yourdon Press, Englewood Cliffs, New Jersey, 1993.

� Robert Dunn

� Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and Tools for Assuring Quality Through Testing, Yourdon Press, Englewood Cliffs, New Jersey, 1993.

� Reference DoD 5000.2-R, section 3.2.3.1.

� Beizer, Boris, “Software Testing Techniques

� Some questions come from the Little Book of Testing, Volume II, Implementation Techniques, Software Program Managers Network, April 1998.

� Author unknown

� Defense Acquisition Acronyms and Terms (2001)

ii

